8 research outputs found

    Stable isotope tagging of epitopes: a highly selective strategy for the identification of major histocompatibility complex class I-associated peptides induced upon viral infection.

    Get PDF
    Identification of peptides presented in major histocompatibility complex (MHC) class I molecules after viral infection is of strategic importance for vaccine development. Until recently, mass spectrometric identification of virus-induced peptides was based on comparative analysis of peptide pools isolated from uninfected and virus-infected cells. Here we report on a powerful strategy aiming at the rapid, unambiguous identification of naturally processed MHC class I-associated peptides, which are induced by viral infection. The methodology, stable isotope tagging of epitopes (SITE), is based on metabolic labeling of endogenously synthesized proteins during infection. This is accomplished by culturing virus-infected cells with stable isotope-labeled amino acids that are expected to be anchor residues (i.e. residues of the peptide that have amino acid side chains that bind into pockets lining the peptide-binding groove of the MHC class I molecule) for the human leukocyte antigen allele of interest. Subsequently these cells are mixed with an equal number of non-infected cells, which are cultured in normal medium. Finally peptides are acid-eluted from immunoprecipitated MHC molecules and subjected to two-dimensional nanoscale LC-MS analysis. Virus-induced peptides are identified through computer-assisted detection of characteristic, binomially distributed ratios of labeled and unlabeled molecules. Using this approach we identified novel measles virus and respiratory syncytial virus epitopes as well as infection-induced self-peptides in several cell types, showing that SITE is a unique and versatile method for unequivocal identification of disease-related MHC class I epitopes

    Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production

    Get PDF
    Major transitions can be expected within the next few decades aiming at the reduction of pollution and global warming and at energy saving measures. For these purposes, new sustainable biorefinery concepts will be needed that will replace the traditional mineral oil-based synthesis of specialty and bulk chemicals. An important group of these chemicals are those that comprise N-functionalities. Many plant components contained in biomass rest or waste stream fractions contain these N-functionalities in proteins and free amino acids that can be used as starting materials for the synthesis of biopolymers and chemicals. This paper describes the economic and technological feasibility for cyanophycin production by fermentation of the potato waste stream Protamylasse™ or directly in plants and its subsequent conversion to a number of N-containing bulk chemicals

    Effect of concentration on the subsequent fate of plasmid DNA in human fibroblasts

    No full text
    The physical fate of plasmid DNA after entry into human fibroblasts was studied using Southern hybridisation and electron microscopy. Exposure of the cells (5x105 per well) to pC194 DNA-CaPi, containing 50 μg plasmid DNA, resulted in the occasional formation of interlocked molecules. Exposure to a co-precipitate containing 100 μg pC194 plasmid DNA per well resulted in an increase of interlocked molecules by a factor of 10–20 relative to the number of monomers. In addition, new classes of molecules were observed. After prolonged incubation of the cells exposed to the higher DNA concentration, the plasmid DNA was partly contained in structures with a very low electrophoretic mobility. Upon restriction endonuclease digestion of the re-extracted DNA, a pattern of bands was observed, suggesting the involvement of illegitimate recombination between non-random plasmid DNA sequences in the formation of the new classes of molecules
    corecore