4,805 research outputs found

    Depositing spacing layers on magnetic film with liquid phase epitaxy

    Get PDF
    Liquid phase epitaxy spacing layer is compatible with systems which are hard-bubble proofed by use of second magnetic garnet film as capping layer. Composite is superior in that: circuit fabrication time is reduced; adherence is superior; visibility is better; and, good match of thermal expansion coefficients is provided

    Investigation of the growth of garnet films by liquid phase epitaxy

    Get PDF
    Liquid phase expitaxy was investigated to determine its applicability to fabricating magnetic rare earth garnet films for spacecraft data recording systems. Two mixed garnet systems were investigated in detail: (1) Gd-Y and (2) Eu-Yb-Y. All films were deposited on Gd3Ga5012 substrates. The uniaxial anisotropy of the Gd-Y garnets is primarily stress-induced. These garnets are characterized by high-domain wall mobility, low coercivity and modest anisotropy. Characteristic length was found to be relatively sensitive to temperature. The Eu-Yb-Y garnets exhibit acceptable mobilities, good temperature stability and reasonable quality factors. The uniaxial anisotropy of these garnets is primarily growth-induced. The system is well suited for compositional "tailoring" to optimize specific desirable properties. Liquid phase epitaxy can be used to deposit Gd3Ga5012 spacing layers on magnetic garnet films and this arrangement possesses certain advantages over more conventional magnetic filmspacing layer combinations. However, it cannot be used if the magnetic film is to be ion implanted

    Global Evaluation of Biofuel Potential from Microalgae

    Get PDF
    Traditional terrestrial crops are currently being utilized as a feedstock for biofuels but resource requirements and low yields limit the sustainability and scalability. Comparatively, next generation feedstocks, such as microalgae, have inherent advantages such as higher solar energy efficiencies, larger lipid fractions, utilization of waste carbon dioxide, and cultivation on poor quality land. The assessment of microalgae-based biofuel production systems through lifecycle, technoeconomic, and scalability assessments has been forced to extrapolate laboratory-scale data due to the immaturity of the technology. This type of scaling leads to large uncertainty in the current near-term productivity potential and ultimately the results from modeling work that rely on this type of modeling. This study integrated a large-scale validated outdoor microalgae growth model that utilizes 21 species and reactor-specific inputs that accurately account for biological effects such as nutrient uptake, respiration, and temperature with hourly historical meteorological data from around the world to determine the current global productivity potential. A global map of the microalgae lipid and biomass productivity has been generated based on the results of annual simulations at 4,388 global locations spread over the seven continents. Maximum annual average yields between 24-27 m3·ha-1·yr-1 are found in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia with the monthly variability (minimum and maximum) yields of these locations ranging between 14 and 33 m3·ha-1·yr-1. A scalability assessment that leverages geographic information systems data to evaluate geographically realized microalgae productivity, energy consumption, and land availability has been performed highlighting the promising potential of microalgae-based biofuels compared to traditional terrestrial feedstocks. Results show many regions can meet their energy requirements through microalgae production without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared to annual average yields, biomass productivity potential, effects of temperature on lipid production, and a comparison of results to previous published modeling assumptions

    Letter from W. S. Moody to T. B. Larimore

    Get PDF
    Letter from W. S. Moody to T. B. Larimore. The one-page typewritten correspondence is dated 22 November 1912

    Modeling a Swinging Atwood Machine

    Get PDF
    The motion of a Swinging Atwood Machine is a difficult to solve for using Newtonian Mechanics. Lagrangian Mechanics, on the other hand, is extremely useful tool for a system that can seem overwhelmingly difficult to solve in Newtonian Mechanics. In this Lab we find the Lagrangian for this Swinging Atwood system, solve for the equation of motion, and compare our model to that of the observed motion of the system. Our model provides a good approximation of the motion, with small discrepancies due to the unknown mass of our pulley and dissipative forces

    Some of the effects of concentrated spent medium on the activity of resting cells of Hydrogenomonas eutropha

    Get PDF
    Activity of cells of Hydrogenomonas eutopha with concentrated spent mediu

    Emergent role of gasotransmitters in ischemia-reperfusion injury

    Get PDF
    Nitric oxide (NO), carbon monoxide (CO) and hydrogen sulfide (H2S) are lipid-soluble, endogenously produced gaseous messenger molecules collectively known as gasotransmitters. Over the last several decades, gasotransmitters have emerged as potent cytoprotective mediators in various models of tissue and cellular injury. Specifically, when used at physiological levels, the exogenous and endogenous manipulation of these three gases has been shown to modulate ischemia/reperfusion injury by inducing a number of cytoprotective mechanisms including: induction of vasodilatation, inhibition of apoptosis, modulation of mitochondrial respiration, induction of antioxidants, and inhibition of inflammation. However, while the actions are similar, there are some differences in the mechanisms by which these gasotransmitters induce these effects and the regulatory actions of the enzyme systems can vary depending upon the gas being investigated. Furthermore, there does appear to be some crosstalk between the gases, which can provide synergistic effects and additional regulatory effects. This review article will discuss several models and mechanisms of gas-mediated cytoprotection, as well as provide a brief discussion on the complex interactions between the gasotransmitter systems

    Maneuverable Applications: Advancing Distributed Computing

    Get PDF
    Extending the military principle of maneuver into the war-fighting domain of cyberspace, academic and military researchers have produced many theoretical and strategic works, though few have focused on researching the applications and systems that apply this principle. We present a survey of our research in developing new architectures for the enhancement of parallel and distributed applica-tions. Specifically, we discuss our work in applying the military concept of maneuver in the cyberspace domain by creating a set of applications and systems called “ma-neuverable applications.” Our research investigates resource provisioning, application optimization, and cybersecurity enhancement through the modification, relocation, addition or removal of computing resources. We first describe our work to create a system to provision a big data computational re-source within academic environments. Secondly, we present a computing testbed built to allow researchers to study network optimizations of data centers. Thirdly, we discuss our Petri Net model of an adaptable system, which increases its cyber security posture in the face of varying levels of threat from malicious actors. Finally, we present evidence that traditional ideas about extending maneuver into cyberspace focus on security only, but computing can benefit from maneuver in multiple manners beyond security
    corecore