125 research outputs found

    Neural Induction, Neural Fate Stabilization, and Neural Stem Cells

    Get PDF
    The promise of stem cell therapy is expected to greatly benefit the treatment of neurodegenerative diseases. An underlying biological reason for the progressive functional losses associated with these diseases is the extremely low natural rate of self-repair in the nervous system. Although the mature CNS harbors a limited number of self-renewing stem cells, these make a significant contribution to only a few areas of brain. Therefore, it is particularly important to understand how to manipulate embryonic stem cells and adult neural stem cells so their descendants can repopulate and functionally repair damaged brain regions. A large knowledge base has been gathered about the normal processes of neural development. The time has come for this information to be applied to the problems of obtaining sufficient, neurally committed stem cells for clinical use. In this article we review the process of neural induction, by which the embryonic ectodermal cells are directed to form the neural plate, and the process of neural�fate stabilization, by which neural plate cells expand in number and consolidate their neural fate. We will present the current knowledge of the transcription factors and signaling molecules that are known to be involved in these processes. We will discuss how these factors may be relevant to manipulating embryonic stem cells to express a neural fate and to produce large numbers of neurally committed, yet undifferentiated, stem cells for transplantation therapies

    Yes-Associated Protein 65 (YAP) Expands Neural Progenitors and Regulates Pax3 Expression in the Neural Plate Border Zone

    Get PDF
    Yes-associated protein 65 (YAP) contains multiple protein-protein interaction domains and functions as both a transcriptional co-activator and as a scaffolding protein. Mouse embryos lacking YAP did not survive past embryonic day 8.5 and showed signs of defective yolk sac vasculogenesis, chorioallantoic fusion, and anterior-posterior (A-P) axis elongation. Given that the YAP knockout mouse defects might be due in part to nutritional deficiencies, we sought to better characterize a role for YAP during early development using embryos that develop externally. YAP morpholino (MO)-mediated loss-of-function in both frog and fish resulted in incomplete epiboly at gastrulation and impaired axis formation, similar to the mouse phenotype. In frog, germ layer specific genes were expressed, but they were temporally delayed. YAP MO-mediated partial knockdown in frog allowed a shortened axis to form. YAP gain-of-function in Xenopus expanded the progenitor populations in the neural plate (sox2+) and neural plate border zone (pax3+), while inhibiting the expression of later markers of tissues derived from the neural plate border zone (neural crest, pre-placodal ectoderm, hatching gland), as well as epidermis and somitic muscle. YAP directly regulates pax3 expression via association with TEAD1 (N-TEF) at a highly conserved, previously undescribed, TEAD-binding site within the 5′ regulatory region of pax3. Structure/function analyses revealed that the PDZ-binding motif of YAP contributes to the inhibition of epidermal and somitic muscle differentiation, but a complete, intact YAP protein is required for expansion of the neural plate and neural plate border zone progenitor pools. These results provide a thorough analysis of YAP mediated gene expression changes in loss- and gain-of-function experiments. Furthermore, this is the first report to use YAP structure-function analyzes to determine which portion of YAP is involved in specific gene expression changes and the first to show direct in vivo evidence of YAP's role in regulating pax3 neural crest expression

    Repressive Interactions Between Transcription Factors Separate Different Embryonic Ectodermal Domains.

    Get PDF
    The embryonic ectoderm is composed of four domains: neural plate, neural crest, pre-placodal region (PPR) and epidermis. Their formation is initiated during early gastrulation by dorsal-ventral and anterior-posterior gradients of signaling factors that first divide the embryonic ectoderm into neural and non-neural domains. Next, the neural crest and PPR domains arise, eithe

    Normal table of Xenopus development: a new graphical resource

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zahn, N., James-Zorn, C., Ponferrada, V. G., Adams, D. S., Grzymkowski, J., Buchholz, D. R., Nascone-Yoder, N. M., Horb, M., Moody, S. A., Vize, P. D., & Zorn, A. M. Normal table of Xenopus development: a new graphical resource. Development, 149(14), (2022): dev200356, https://doi.org/10.1242/dev.200356.Normal tables of development are essential for studies of embryogenesis, serving as an important resource for model organisms, including the frog Xenopus laevis. Xenopus has long been used to study developmental and cell biology, and is an increasingly important model for human birth defects and disease, genomics, proteomics and toxicology. Scientists utilize Nieuwkoop and Faber's classic ‘Normal Table of Xenopus laevis (Daudin)’ and accompanying illustrations to enable experimental reproducibility and reuse the illustrations in new publications and teaching. However, it is no longer possible to obtain permission for these copyrighted illustrations. We present 133 new, high-quality illustrations of X. laevis development from fertilization to metamorphosis, with additional views that were not available in the original collection. All the images are available on Xenbase, the Xenopus knowledgebase (http://www.xenbase.org/entry/zahn.do), for download and reuse under an attributable, non-commercial creative commons license. Additionally, we have compiled a ‘Landmarks Table’ of key morphological features and marker gene expression that can be used to distinguish stages quickly and reliably (https://www.xenbase.org/entry/landmarks-table.do). This new open-access resource will facilitate Xenopus research and teaching in the decades to come.This work was supported by grants from the Eunice Kennedy Shriver National Institute of Child Health and Human Development [P41 HD064556 to A.M.Z. and P.D.V. (Xenbase)] and the National Institute of Child Health and Human Development [P40-OD010997 and R24-OD030008 to M.H. (National Xenopus Resource)]. Open Access funding provided by Cincinnati Children's Hospital Medical Center. Deposited in PMC for immediate release

    Development and validation of self-reported line drawings for assessment of knee malalignment and foot rotation: a cross-sectional comparative study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For large scale epidemiological studies clinical assessments and radiographs can be impractical and expensive to apply to more than just a sample of the population examined. The study objectives were to develop and validate two novel instruments for self-reported knee malalignment and foot rotation suitable for use in questionnaire studies of knee pain and osteoarthritis.</p> <p>Methods</p> <p>Two sets of line drawings were developed using similar methodology. Each instrument consisted of an explanatory question followed by a set of drawings showing straight alignment, then two each at 7.5° angulation and 15° angulation in the varus/valgus (knee) and inward/outward (foot) directions. Forty one participants undertaking a community study completed the instruments on two occasions. Participants were assessed once by a blinded expert clinical observer with demonstrated excellent reproducibility. Validity was assessed by sensitivity, specificity and likelihood ratio (LR) using the observer as the reference standard. Reliability was assessed using weighted kappa (κ). Knee malalignment was measured on 400 knee radiographs. General linear model was used to assess for the presence of a linear increase in knee alignment angle (measured medially) from self-reported severe varus to mild varus, straight, mild valgus and severe valgus deformity.</p> <p>Results</p> <p>Observer reproducibility (κ) was 0.89 and 0.81 for the knee malalignment and foot rotation instruments respectively. Self-reported participant reproducibility was also good for the knee (κ 0.73) and foot (κ 0.87) instruments. Validity was excellent for the knee malalignment instrument, with a sensitivity of 0.74 (95%CI 0.54, 0.93) and specificity of 0.97 (95%CI 0.94, 1.00). Similarly the foot rotation instrument was also found to have high sensitivity (0.92, 95%CI 0.83, 1.01) and specificity (0.96, 95%CI 0.93, 1.00). The knee alignment angle increased progressively from self reported severe varus to mild varus, straight, mild valgus and severe valgus knee malalignment (p<sub>trend </sub><0.001).</p> <p>Conclusions</p> <p>The two novel instruments appear to provide a valid and reliable assessment of self-reported knee malalignment and foot rotation, and may have a practical use in epidemiological studies.</p

    A cyclin-binding motif in human papillomavirus type 18 (HPV18) E1^E4 is necessary for association with CDK–cyclin complexes and G2/M cell cycle arrest of keratinocytes, but is not required for differentiation-dependent viral genome amplification or L1 capsid protein expression

    Get PDF
    Investigation into the effects the HPV E4 protein has in viral life cycleThe G2/M arrest function of human papillomavirus (HPV) E4 proteins is hypothesized to be necessary for viral genome amplification. Full-length HPV18 E1^E4 protein is essential for efficient viral genome amplification. Here we identify key determinants within a CDK-bipartite consensus recognition motif in HPV18 E1^E4 that are critical for association with active CDK–cyclin complexes and in vitro phosphorylation at the predicted CDK phosphorylation site (threonine 23). The optimal cyclin-binding sequence (43RRLL46) within this E4 motif is required for G2/M arrest of primary keratinocytes and correlates with cytoplasmic retention of cyclin B1, but not cyclin A. Disruption of this motif in the E4 ORF of HPV18 genomes, and the subsequent generation of stable cell lines in primary keratinocytes revealed that this motif was not essential for viral genome amplification or L1 capsid protein induction. We conclude that the HPV18 E4 G2/M arrest function does not play a role in early vegetative events

    Cross-talk between cd1d-restricted nkt cells and γδ cells in t regulatory cell response

    Get PDF
    CD1d is a non-classical major histocompatibility class 1-like molecule which primarily presents either microbial or endogenous glycolipid antigens to T cells involved in innate immunity. Natural killer T (NKT) cells and a subpopulation of γδ T cells expressing the Vγ4 T cell receptor (TCR) recognize CD1d. NKT and Vγ4 T cells function in the innate immune response via rapid activation subsequent to infection and secrete large quantities of cytokines that both help control infection and modulate the developing adaptive immune response. T regulatory cells represent one cell population impacted by both NKT and Vγ4 T cells. This review discusses the evidence that NKT cells promote T regulatory cell activation both through direct interaction of NKT cell and dendritic cells and through NKT cell secretion of large amounts of TGFβ, IL-10 and IL-2. Recent studies have shown that CD1d-restricted Vγ4 T cells, in contrast to NKT cells, selectively kill T regulatory cells through a caspase-dependent mechanism. Vγ4 T cell elimination of the T regulatory cell population allows activation of autoimmune CD8+ effector cells leading to severe cardiac injury in a coxsackievirus B3 (CVB3) myocarditis model in mice. CD1d-restricted immunity can therefore lead to either immunosuppression or autoimmunity depending upon the type of innate effector dominating during the infection
    • …
    corecore