1,116 research outputs found

    Simple trace criterion for classification of multilayers

    Full text link
    The action of any lossless multilayer is described by a transfer matrix that can be factorized in terms of three basic matrices. We introduce a simple trace criterion that classifies multilayers in three classes with properties closely related with one (and only one) of these three basic matrices.Comment: To be published in Optics Letter

    Hyperbolic reflections as fundamental building blocks for multilayer optics

    Full text link
    We reelaborate on the basic properties of lossless multilayers by using bilinear transformations. We study some interesting properties of the multilayer transfer function in the unit disk, showing that hyperbolic geometry turns out to be an essential tool for understanding multilayer action. We use a simple trace criterion to classify multilayers into three classes that represent rotations, translations, or parallel displacements. Moreover, we show that these three actions can be decomposed as a product of two reflections in hyperbolic lines. Therefore, we conclude that hyperbolic reflections can be considered as the basic pieces for a deeper understanding of multilayer optics.Comment: 7 pages, 7 figures, accepted for publication in J. Opt. Soc. Am.

    General unit-disk representation for periodic multilayers

    Full text link
    We suggest a geometrical framework to discuss periodic layered structures in the unit disk. The band gaps appear when the point representing the system approaches the unit circle. We show that the trace of the matrix describing the basic period allows for a classification in three families of orbits with quite different properties. The laws of convergence of the iterates to the unit circle can be then considered as universal features of the reflection.Comment: 3 pages, 2 eps-figures. To be published in Optics Letter

    A geometrical setting for the classification of multilayers

    Full text link
    We elaborate on the consequences of the factorization of the transfer matrix of any lossless multilayer in terms of three basic matrices of simple interpretation. By considering the bilinear transformation that this transfer matrix induces in the complex plane, we introduce the concept of multilayer transfer function and study its properties in the unit disk. In this geometrical setting, our factorization translates into three actions that can be viewed as the basic pieces for understanding the multilayer behavior. Additionally, we introduce a simple trace criterion that allows us to classify multilayers in three types with properties closely related to one (and only one) of these three basic matrices. We apply this approach to analyze some practical examples that are representative of these types of matrices.Comment: 8 pages, 5 figures. To be published in J. Opt. Soc. Am.

    Fresnel coefficients as hyperbolic rotations

    Full text link
    We describe the action of a plane interface between two semi-infinite media in terms of a transfer matrix. We find a remarkably simple factorization of this matrix, which enables us to express the Fresnel coefficients as a hyperbolic rotation.Comment: 6 pages, 3 figure

    Constructing Fresnel reflection coefficients by ruler and compass

    Get PDF
    A simple and intuitive geometical method to analyze Fresnel formulas is presented. It applies to transparent media and is valid for perpendicular and parallel polarizations. The approach gives a graphical characterization particularly simple of the critical and Brewster angles. It also provides an interpretation of the relation between the reflection coefficients for both basic polarizations as a symmetry in the plane

    Iwasawa Effects in Multi-layer Optics

    Get PDF
    There are many two-by-two matrices in layer optics. It is shown that they can be formulated in terms of a three-parameter group whose algebraic property is the same as the group of Lorentz transformations in a space with two space-like and one time-like dimensions, or the Sp(2)Sp(2) group which is a standard theoretical tool in optics. Among the interesting mathematical properties of this group, the Iwasawa decomposition drastically simplifies the matrix algebra under certain conditions, and leads to a concise expression for the S-matrix for transmitted and reflected rays. It is shown that the Iwasawa effect can be observed in multi-layer optics, and a sample calculation of the S-matrix is given.Comment: RevTex 10 pages including 1 psfi

    Rotations associated with Lorentz boosts

    Get PDF
    It is possible to associate two angles with two successive non-collinear Lorentz boosts. If one boost is applied after the initial boost, the result is the final boost preceded by a rotation called the Wigner rotation. The other rotation is associated with Wigner's O(3)-like little group. These two angles are shown to be different. However, it is shown that the sum of these two rotation angles is equal to the angle between the initial and final boosts. This relation is studied for both low-speed and high-speed limits. Furthermore, it is noted that the two-by-two matrices which are under the responsibility of other branches of physics can be interpreted in terms of the transformations of the Lorentz group, or vice versa. Classical ray optics is mentioned as a case in point.Comment: LaTeX, 16 Pages, 4 epsfigure

    Optimizing omnidirectional reflection by multilayer mirrors

    Full text link
    Periodic layered media can reflect strongly for all incident angles and polarizations in a given frequency range. Quarter-wave stacks at normal incidence are commonplace in the design of such omnidirectional reflectors. We discuss alternative design criteria to optimize these systems.Comment: 9 pages, 6 figures. To be published in J. Opt. A: Pure and Applied Optic
    corecore