262 research outputs found

    Polarization Diffusion from Spacetime Uncertainty

    Full text link
    A model of Lorentz invariant random fluctuations in photon polarization is presented. The effects are frequency dependent and affect the polarization of photons as they propagate through space. We test for this effect by confronting the model with the latest measurements of polarization of Cosmic Microwave Background (CMB) photons.Comment: 4 pages, 1 figur

    As Time Goes by: Understanding Child and Family Factors Shaping Behavioral Outcomes After Traumatic Brain Injury

    Get PDF
    Objective: To model pre-injury child and family factors associated with the trajectory of internalizing and externalizing behavior problems across the first 3 years in children with pediatric traumatic brain injury (TBI) relative to children with orthopedic injuries (OI). Parent-reported emotional symptoms and conduct problems were expected to have unique and shared predictors. We hypothesized that TBI, female sex, greater pre-injury executive dysfunction, adjustment problems, lower income, and family dysfunction would be associated with less favorable outcomes. Methods: In a prospective longitudinal cohort study, we examined the level of behavior problems at 12 months after injury and rate of change from pre-injury to 12 months and from 12 to 36 months in children ages 4–15 years with mild to severe TBI relative to children with OI. A structural equation model framework incorporated injury characteristics, child demographic variables, as well as pre-injury child reserve and family attributes. Internalizing and externalizing behavior problems were indexed using the parent-rated Emotional Symptoms and Conduct Problems scales from the Strengths and Difficulties questionnaire. Results: The analysis cohort of 534 children [64% boys, M (SD) 8.8 (4.3) years of age] included 395 with mild to severe TBI and 139 with OI. Behavior ratings were higher after TBI than OI but did not differ by TBI severity. TBI, higher pre-injury executive dysfunction, and lower income predicted the level and trajectory of both Emotional Symptoms and Conduct Problems at 12 months. Female sex and poorer family functioning were vulnerability factors associated with greater increase and change in Emotional Symptoms by 12 months after injury; unique predictors of Conduct Problems included younger age and prior emotional/behavioral problems. Across the long-term follow-up from 12 to 36 months, Emotional Symptoms increased significantly and Conduct Problems stabilized. TBI was not a significant predictor of change during the chronic stage of recovery. Conclusions: After TBI, Emotional Symptoms and Conduct Problem scores were elevated, had different trajectories of change, increased or stayed elevated from 12 to 36 months after TBI, and did not return to pre-injury levels across the 3 year follow-up. These findings highlight the importance of addressing behavioral problems after TBI across an extended time frame

    Relating gravitational wave constraints from primordial nucleosynthesis, pulsar timing, laser interferometers, and the CMB: implications for the early universe

    Full text link
    We derive a general master equation relating the gravitational-wave observables r and Omega_gw(f). Here r is the tensor-to-scalar ratio, constrained by cosmic-microwave-background (CMB) experiments; and Omega_gw(f) is the energy spectrum of primordial gravitational-waves, constrained e.g. by pulsar-timing measurements, laser-interferometer experiments, and Big Bang Nucleosynthesis (BBN). Differentiating the master equation yields a new expression for the tilt d(ln Omega_gw(f))/d(ln f). The relationship between r and Omega_gw(f) depends sensitively on the uncertain physics of the early universe, and we show that this uncertainty may be encapsulated (in a model-independent way) by two quantities: w_hat(f) and nt_hat(f), where nt_hat(f) is a certain logarithmic average over nt(k) (the primordial tensor spectral index); and w_hat(f) is a certain logarithmic average over w_tilde(a) (the effective equation-of-state in the early universe, after horizon re-entry). Here the effective equation-of-state parameter w_tilde(a) is a combination of the ordinary equation-of-state parameter w(a) and the bulk viscosity zeta(a). Thus, by comparing constraints on r and Omega_gw(f), one can obtain (remarkably tight) constraints in the [w_hat(f), nt_hat(f)] plane. In particular, this is the best way to constrain (or detect) the presence of a ``stiff'' energy component (with w > 1/3) in the early universe, prior to BBN. Finally, although most of our analysis does not assume inflation, we point out that if CMB experiments detect a non-zero value for r, then we will immediately obtain (as a free by-product) a new upper bound w_hat < 0.55 on the logarithmically averaged effective equation-of-state parameter during the ``primordial dark age'' between the end of inflation and the start of BBN.Comment: v1: 12 + 6 pages (main text + appendices), 7 figures; v2: fonts fixed in figure

    Interstellar dust in the BOOMERanG maps

    Get PDF
    Interstellar dust (ISD) emission is present in the mm-wave maps obtained by the BOOMERanG experiment at intermediate and high Galactic latitudes. We find that, while being sub-dominant at the lower frequencies (90,150, 240 GHz), thermal emission from ISD is dominant at 410 GHz, and is well correlated with the IRAS map at 100 µm. We find also that the angular power spectrum of ISD fluctuations at 410 GHz is a power law, and its level is negligible with respect to the angular power spectrum of the Cosmic Microwave Background (CMB) at 90 and 150 GHz

    Sky maps without anisotropies in the cosmic microwave background are a better fit to WMAP's uncalibrated time ordered data than the official sky maps

    Get PDF
    The purpose of this reanalysis of the WMAP uncalibrated time ordered data (TOD) was two fold. The first was to reassess the reliability of the detection of the anisotropies in the official WMAP sky maps of the cosmic microwave background (CMB). The second was to assess the performance of a proposed criterion in avoiding systematic error in detecting a signal of interest. The criterion was implemented by testing the null hypothesis that the uncalibrated TOD was consistent with no anisotropies when WMAP's hourly calibration parameters were allowed to vary. It was shown independently for all 20 WMAP channels that sky maps with no anisotropies were a better fit to the TOD than those from the official analysis. The recently launched Planck satellite should help sort out this perplexing result.Comment: 11 pages with 1 figure and 2 tables. Extensively rewritten to explain the research bette

    Foregrounds in the BOOMERANG-LDB data: a preliminary rms analysis

    Get PDF
    We present a preliminary analysis of the BOOMERanG LDB maps, focused on foregrounds. BOOMERanG detects dust emission at moderately low galactic latitudes (b>20ob > -20^o) in bands centered at 90, 150, 240, 410 GHz. At higher Galactic latitudes, we use the BOOMERanG data to set conservative upper limits on the level of contamination at 90 and 150 GHz. We find that the mean square signal correlated with the IRAS/DIRBE dust template is less than 3% of the mean square signal due to CMB anisotropy

    Cosmic Microwave Background Polarization

    Full text link
    Cosmic microwave background (CMB) anisotropy is our richest source of cosmological information; the standard cosmological model was largely established thanks to study of the temperature anisotropies. By the end of the decade, the Planck satellite will close this important chapter and move us deeper into the new frontier of polarization measurements. Numerous ground--based and balloon--borne experiments are already forging into this new territory. Besides providing new and independent information on the primordial density perturbations and cosmological parameters, polarization measurements offer the potential to detect primordial gravity waves, constrain dark energy and measure the neutrino mass scale. A vigorous experimental program is underway worldwide and heading towards a new satellite mission dedicated to CMB polarization.Comment: Review given at TAUP 2005; References added; Additional reference

    Instrumental and Analytic Methods for Bolometric Polarimetry

    Get PDF
    We discuss instrumental and analytic methods that have been developed for the first generation of bolometric cosmic microwave background (CMB) polarimeters. The design, characterization, and analysis of data obtained using Polarization Sensitive Bolometers (PSBs) are described in detail. This is followed by a brief study of the effect of various polarization modulation techniques on the recovery of sky polarization from scanning polarimeter data. Having been successfully implemented on the sub-orbital Boomerang experiment, PSBs are currently operational in two terrestrial CMB polarization experiments (QUaD and the Robinson Telescope). We investigate two approaches to the analysis of data from these experiments, using realistic simulations of time ordered data to illustrate the impact of instrumental effects on the fidelity of the recovered polarization signal. We find that the analysis of difference time streams takes full advantage of the high degree of common mode rejection afforded by the PSB design. In addition to the observational efforts currently underway, this discussion is directly applicable to the PSBs that constitute the polarized capability of the Planck HFI instrument.Comment: 23 pages, 11 figures. for submission to A&

    WMAP confirming the ellipticity in BOOMERanG and COBE CMB maps

    Full text link
    The recent study of BOOMERanG 150 GHz Cosmic Microwave Background (CMB) radiation maps have detected ellipticity of the temperature anisotropy spots independent on the temperature threshold. The effect has been found for spots up to several degrees in size, where the biases of the ellipticity estimator and of the noise are small. To check the effect, now we have studied, with the same algorithm and in the same sky region, the WMAP maps. We find ellipticity of the same average value also in WMAP maps, despite of the different sensitivity of the two experiments to low multipoles. Large spot elongations had been detected also for the COBE-DMR maps. If this effect is due to geodesic mixing and hence due to non precisely zero curvature of the hyperbolic Universe, it can be linked to the origin of WMAP low multipoles anomaly.Comment: More explanations and two references adde

    Mapping the CMB Sky: The BOOMERANG experiment

    Get PDF
    We describe the BOOMERanG experiment, a stratospheric balloon telescope intended to measure the Cosmic Microwave Background anisotropy at angular scales between a few degrees and ten arcminutes. The experiment has been optimized for a long duration (7 to 14 days) flight circumnavigating Antarctica at the end of 1998. A test flight was performed on Aug.30, 1997 in Texas. The level of performance achieved in the test flight was satisfactory and compatible with the requirements for the long duration flight.Comment: 11 pages, 6 figure
    corecore