54 research outputs found

    One-Input Three-Output Current-Mode Universal Filter Using Translinear Current Conveyors

    Get PDF
    This paper presents a new current-mode universal filter with one-input three-output employing three translinear current conveyors and two grounded capacitors. The proposed filter provides low-pass, band-pass, high-pass current response with high output impedance output which can be directly connected for current-mode circuit. The band-pass and all-pass filters can also be obtained. The parameters wo and Q can be controlled separately and electronically by the bias currents of current conveyors. For realizing all filtering functions, no passive and active matching conditions are required. The active and passive sensitivities are low. The characteristic of the proposed circuit can be confirmed by SPICE simulations

    Current-Controlled Current-Mode Quadrature Oscillator Using Translinear Current Conveyors

    Get PDF
    In this paper, a current-mode quadrature oscillator using second-generation current conveyors (CCIIs) is presented. The proposed oscillator consists of two CCIIs, two grounded capacitors and two grounded resistors. The circuit is suitable for integrated circuit implementation by using grounded capacitors. In addition, a new current-controlled current-mode quadrature oscillator using two current controlled second generation current conveyors (CCCIIs) and two grounded capacitors can be obtained by replacing CCIIs and resistors series at X terminals with CCCIIs. The condition of oscillation and frequency of oscillation can be orthogonally controlled. The frequency of oscillation can be controlled by grounded resistors and external bias currents. The proposed circuits have been simulated by SPICE simulations. The simulation results are confirmed the proposed theory

    High input impedance voltage-mode universal filter and its modification as quadrature oscillator using VDDDAs

    Get PDF
    The second order universal voltage-mode filter using voltage differencing differential difference amplifiers (VDDDAs) has been proposed. It has high input impedance voltage-mode biquad filter with orthogonal tune of natural frequency and quality factor. The proposed filter simultaneously provides five filter responses: low-pass (LP), high-pass (HP), band-reject (BR), all-pass (AP) and band-pass (BP) in the same circuit topology. The natural frequency and quality factor can be tuned electronically and orthogonally dc bias current. The output impedance at output nodes HP, AP and BR has low impedance which can connect to other circuit without the use of voltage buffers. The proposed filter consists of three VDDDAs, one grounded resistor and two grounded capacitors. This makes the proposed filter suitable for integrated circuit development. With slightly modifying the proposed filter, the voltage-mode qudrature sinusoidal oscillator with low output impedance and independent control of condition of oscillation (CO) and frequency of oscillation (FO) has been achieved. The results shown in this paper are from PSPICE simulation and experiment to validate the proposed circuits

    A Capacitor-Grounded Current-Tunable Current Mode All-Pass Network

    Get PDF
    ABSTRACT A first-order current-mode all-pass section (CM-APS) using two current-controlled conveyors (CCCII

    0.3-Volt Rail-to-Rail DDTA and Its Application in a Universal Filter and Quadrature Oscillator

    Get PDF
    This paper presents the extremely low-voltage supply of the CMOS structure of a differential difference transconductance amplifier (DDTA). With a 0.3-volt supply voltage, the circuit offers rail-to-rail operational capability. The circuit is designed for low-frequency biomedical and sensor applications, and it consumes 357.4 nW of power. Based on two DDTAs and two grounded capacitors, a voltage-mode universal filter and quadrature oscillator are presented as applications. The universal filter possesses high-input impedance and electronic tuning ability of the natural frequency in the range of tens up to hundreds of Hz. The total harmonic distortion (THD) for the band-pass filter was 0.5% for 100 mV(pp) @ 84.47 Hz input voltage. The slight modification of the filter yields a quadrature oscillator. The condition and the frequency of oscillation are orthogonally controllable. The frequency of oscillation can also be controlled electronically. The THD for a 67 Hz oscillation frequency was around 1.2%. The circuit is designed and simulated in a Cadence environment using 130 nm CMOS technology from United Microelectronics Corporation (UMC). The simulation results confirm the performance of the designed circuits

    0.5 V, nW-Range Universal Filter Based on Multiple-Input Transconductor for Biosignals Processing

    Get PDF
    This paper demonstrates the advantages of the multiple-input transconductor (MI-G(m)) in filter application, in terms of topology simplification, increasing filter functions, and minimizing the count of needed active blocks and their consumed power. Further, the filter enjoys high input impedance, uses three MI-G(m)s and two grounded capacitors, and it offers both inverting and non-inverting versions of low-pass (LPF), high-pass (HPF), band-pass (BPF), band-stop (BS) and all-pass (AP) functions. The filter operates under a supply voltage of 0.5 V and consumes 37 nW, hence it is suitable for extremely low-voltage low-power applications like biosignals processing. The circuit was designed in a Cadence environment using 180 nm CMOS technology from Taiwan Semiconductor Manufacturing Company (TSMC). The post-layout simulation results, including Monte Carlo and process, voltage, temperature (PVT) corners for the proposed filter correlate well with the theoretical results that confirm attractive features of the developed filter based on MI-G(m)
    corecore