14,200 research outputs found

    Experimental creep data for a built-up aluminum/titanium structure subjected to heating and loading

    Get PDF
    Experimental creep, temperature, and strain data resulting from a laboratory experiment on a built-up aluminum/titanium structure are presented. The structure and the experiment are described in detail. A heating and loading experiment lasting approximately six hours is conducted on a test structure. Considerable creep strain resulted from compressive stresses in the heated skin. Large residual stresses were found after the experiment was completed. The residual stresses in the substructure frames were large enough to preclude further cycles of creep experiments with this built-up structure because of concern that the frame webs would buckle

    NASA participation in the AMST program

    Get PDF
    The objectives of the NASA Advanced Medium STOL Transport Experiments Program are discussed and several of the NASA experiments currently implemented and conducted on the YC-14 and YC-15 prototype aircraft are described. Emphasis is placed on experiments related to powered lift aerodynamics and acoustics

    Self-Regulation of SMR Power Led to an Enhancement of Functional Connectivity of Somatomotor Cortices in Fibromyalgia Patients

    Get PDF
    Neuroimaging studies have demonstrated that altered activity in somatosensory and motor cortices play a key role in pain chronification. Neurofeedback training of sensorimotor rhythm (SMR) is a tool which allow individuals to self-modulate their brain activity and to produce significant changes over somatomotor brain areas. Several studies have further shown that neurofeedback training may reduce pain and other pain-related symptoms in chronic pain patients. The goal of the present study was to analyze changes in SMR power and brain functional connectivity of the somatosensory and motor cortices elicited by neurofeedback task designed to both synchronize and desynchronize the SMR power over motor and somatosensory areas in fibromyalgia patients. Seventeen patients were randomly assigned to the SMR training (n = 9) or to a sham protocol (n = 8). All participants were trained during 6 sessions, and fMRI and EEG power elicited by synchronization and desynchronization trials were analyzed. In the SMR training group, four patients achieved the objective of SMR modulation in more than 70% of the trials from the second training session (good responders), while five patients performed the task at the chance level (bad responders). Good responders to the neurofeedback training significantly reduced pain and increased both SMR power modulationandfunctionalconnectivityofmotorandsomatosensoryrelatedareasduring the last neurofeedback training session, whereas no changes in brain activity or pain were observed in bad responders or participants in the sham group. In addition, we observed that good responders were characterized by reduced impact of fibromyalgia and pain symptoms, as well as by increased levels of health-related quality of life during the pre-training sessions. In summary, the present study revealed that neurofeedback training of SMR elicited significant brain changes in somatomotor areas leading to a significant reduction of pain in fibromyalgia patients. In this sense, our research provide evidence that neurofeedback training is a promising tool for a better understanding of brain mechanisms involved in pain chronification

    Long-range correlations and trends in Colombian seismic time series

    Full text link
    We study long-range correlations and trends in time series extracted from the data of seismic events occurred from 1973 to 2011 in a rectangular region that contains mainly all the continental part of Colombia. The long-range correlations are detected by the calculation of the Hurst exponents for the time series of interevent intervals, separation distances, depth differences and magnitude differences. By using a modification of the classical R/SR/S method that has been developed to detect short-range correlations in time series, we find the existence of persistence for all the time series considered except for magnitude differences. We find also, by using the DFADFA until the third order, that the studied time series are not influenced by trends. Additionally, an analysis of the Hurst exponent as a function of the number of events in the time and the maximum window size is presented.Comment: 21 pages, 6 figures, 2 figures added, types corrected, accepted to be published in Physica
    corecore