349 research outputs found

    Testing the Dispersion of Nanoparticles in a Nanocomposite with an Ultra-Low Fill Content Using a Novel Non-Destructive Evaluation Technique

    Get PDF
    A non-destructive evaluation (NDE) technique capable of testing the dispersion of nanoparticles in a nanocomposite would be of great use to the industry to check the quality of the products made and to ensure compliance with their specifications. Very few NDE techniques found in the literature can evaluate the level of dispersion of the nanoparticles in the whole nanocomposite. Here, a recently developed NDE technique based on pulsed phase thermography (PPT) in transmission mode was used to assess the particle dispersion in ultra-low, less than 0.05 wt%, Ag enriched polymeric based nanocomposite manufactured with an innovative nano-coating fragmentation technique. The phasegrams obtained with the presented technique clearly showed clusters or bundles of Ag nanoparticles when present, down to the size of 6 µm. Therefore, the new NDE approach can be applied to verify that the expected levels of dispersion are met in the production process

    Projecting Ancient Ancestry in Modern-Day Arabians and Iranians: A Key Role of the Past Exposed Arabo-Persian Gulf on Human Migrations

    Get PDF
    The Arabian Peninsula is strategic for investigations centered on the early structuring of modern humans in the wake of the out-of-Africa migration. Despite its poor climatic conditions for the recovery of ancient human DNA evidence, the availability of both genomic data from neighboring ancient specimens and informative statistical tools allow modeling the ancestry of local modern populations. We applied this approach to a data set of 741,000 variants screened in 291 Arabians and 78 Iranians, and obtained insightful evidence. The west-east axis was a strong forcer of population structure in the Peninsula, and, more importantly, there were clear continuums throughout time linking western Arabia with the Levant, and eastern Arabia with Iran and the Caucasus. Eastern Arabians also displayed the highest levels of the basal Eurasian lineage of all tested modern-day populations, a signal that was maintained even after correcting for a possible bias due to a recent sub-Saharan African input in their genomes. Not surprisingly, eastern Arabians were also the ones with highest similarity with Iberomaurusians, who were, so far, the best proxy for the basal Eurasians amongst the known ancient specimens. The basal Eurasian lineage is the signature of ancient non-Africans who diverged from the common European-eastern Asian pool before 50,000 years ago, prior to the later interbred with Neanderthals. Our results appear to indicate that the exposed basin of the Arabo-Persian Gulf was the possible home of basal Eurasians, a scenario to be further investigated by searching ancient Arabian human specimens.This work was financed by FEDER-Fundo Europeu de Desenvolvimento Regional funds through COMPETE 2020-Operacional Programme for Competitiveness and Internationalization (POCI), Portugal 2020, by Portuguese funds through FCT-Fundação para a Ciência e a Tecnologia, Ministério da Ciência, Tecnologia e Inovação in the framework of the project “Biomedical anthropological study in Arabian Peninsula based on high-throughput genomics” (POCI-01-0145-FEDER-016609), the Italian Ministry of Education, University and Research project Dipartimenti di Eccellenza Program (2018–2022)—Department of Biology and Biotechnology “L. Spallanzani,” University of Pavia (to A.T.). V.F. has a postdoc grant through FCT (SFRH/BPD/114927/2016). i3S is financed by FEDER-COMPETE 2020, Portugal 2020 and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences” (POCI-01-0145-FEDER-007274). Authors would like to thank Dr Francesco Bertolini for facilitating the research of A.R. in the last stage of the article preparation

    West Asian sources of the Eurasian component in Ethiopians: a reassessment

    Get PDF
    The presence of genomic signatures of Eurasian origin in contemporary Ethiopians has been reported by several authors and estimated to have arrived in the area from 3000 years ago. Several studies reported plausible source populations for such a signature, using haplotype based methods on modern data or single-site methods on modern or ancient data. These studies did not reach a consensus and suggested an Anatolian or Sardinia-like proxy, broadly Levantine or Neolithic Levantine as possible sources. We demonstrate, however, that the deeply divergent, autochthonous African component which accounts for ~50% of most contemporary Ethiopian genomes, affects the overall allele frequency spectrum to an extent that makes it hard to control for it and, at once, to discern between subtly different, yet important, Eurasian sources (such as Anatolian or Levant Neolithic ones). Here we re-assess pattern of allele sharing between the Eurasian component of Ethiopians (here called “NAF” for Non African) and ancient and modern proxies. Our results unveil a genomic legacy that may connect the Eurasian genetic component of contemporary Ethiopians with Sea People and with population movements that affected the Mediterranean area and the Levant after the fall of the Minoan civilization

    Unravelling the hidden ancestry of American admixed populations

    Get PDF
    The movement of people into the Americas has brought different populations into contact, and contemporary American genomes are the product of a range of complex admixture events. Here we apply a haplotype-based ancestry identification approach to a large set of genome-wide SNP data from a variety of American, European and African populations to determine the contributions of different ancestral populations to the Americas. Our results provide a fine-scale characterization of the source populations, identify a series of novel, previously unreported contributions from Africa and Europe and highlight geohistorical structure in the ancestry of American admixed populations

    Detecting Genetic Isolation in Human Populations: A Study of European Language Minorities

    Get PDF
    The identification of isolation signatures is fundamental to better understand the genetic structure of human populations and to test the relations between cultural factors and genetic variation. However, with current approaches, it is not possible to distinguish between the consequences of long-term isolation and the effects of reduced sample size, selection and differential gene flow. To overcome these limitations, we have integrated the analysis of classical genetic diversity measures with a Bayesian method to estimate gene flow and have carried out simulations based on the coalescent. Combining these approaches, we first tested whether the relatively short history of cultural and geographical isolation of four "linguistic islands" of the Eastern Alps (Lessinia, Sauris, Sappada and Timau) had left detectable signatures in their genetic structure. We then compared our findings to previous studies of European population isolates. Finally, we explored the importance of demographic and cultural factors in shaping genetic diversity among the groups under study. A combination of small initial effective size and continued genetic isolation from surrounding populations seems to provide a coherent explanation for the diversity observed among Sauris, Sappada and Timau, which was found to be substantially greater than in other groups of European isolated populations. Simulations of micro-evolutionary scenarios indicate that ethnicity might have been important in increasing genetic diversity among these culturally related and spatially close populations. © 2013 Capocasa et al

    Ancestry deconvolution and partial polygenic score can improve susceptibility predictions in recently admixed individuals

    Get PDF
    Polygenic Scores (PSs) describe the genetic component of an individual’s quantitative phenotype or their susceptibility to diseases with a genetic basis. Currently, PSs rely on population-dependent contributions of many associated alleles, with limited applicability to understudied populations and recently admixed individuals. Here we introduce a combination of local ancestry deconvolution and partial PS computation to account for the population-specific nature of the association signals in individuals with admixed ancestry. We demonstrate partial PS to be a proxy for the total PS and that a portion of the genome is enough to improve susceptibility predictions for the traits we test. By combining partial PSs from different populations, we are able to improve trait predictability in admixed individuals with some European ancestry. These results may extend the applicability of PSs to subjects with a complex history of admixture, where current methods cannot be applied

    Selective CDK9 inhibition overcomes TRAIL resistance by concomitant suppression of cFlip and Mcl-1.

    Get PDF
    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) can induce apoptosis in many cancer cells without causing toxicity in vivo. However, to date, TRAIL-receptor agonists have only shown limited therapeutic benefit in clinical trials. This can, most likely, be attributed to the fact that 50% of all cancer cell lines and most primary human cancers are TRAIL resistant. Consequently, future TRAIL-based therapies will require the addition of sensitizing agents that remove crucial blocks in the TRAIL apoptosis pathway. Here, we identify PIK-75, a small molecule inhibitor of the p110α isoform of phosphoinositide-3 kinase (PI3K), as an exceptionally potent TRAIL apoptosis sensitizer. Surprisingly, PI3K inhibition was not responsible for this activity. A kinome-wide in vitro screen revealed that PIK-75 strongly inhibits a panel of 27 kinases in addition to p110α. Within this panel, we identified cyclin-dependent kinase 9 (CDK9) as responsible for TRAIL resistance of cancer cells. Combination of CDK9 inhibition with TRAIL effectively induced apoptosis even in highly TRAIL-resistant cancer cells. Mechanistically, CDK9 inhibition resulted in downregulation of cellular FLICE-like inhibitory protein (cFlip) and Mcl-1 at both the mRNA and protein levels. Concomitant cFlip and Mcl-1 downregulation was required and sufficient for TRAIL sensitization by CDK9 inhibition. When evaluating cancer selectivity of TRAIL combined with SNS-032, the most selective and clinically used inhibitor of CDK9, we found that a panel of mostly TRAIL-resistant non-small cell lung cancer cell lines was readily killed, even at low concentrations of TRAIL. Primary human hepatocytes did not succumb to the same treatment regime, defining a therapeutic window. Importantly, TRAIL in combination with SNS-032 eradicated established, orthotopic lung cancer xenografts in vivo. Based on the high potency of CDK9 inhibition as a cancer cell-selective TRAIL-sensitizing strategy, we envisage the development of new, highly effective cancer therapies.Cell Death and Differentiation advance online publication, 20 December 2013; doi:10.1038/cdd.2013.179
    • …
    corecore