175 research outputs found

    From Chirps to Random-FM Excitations in Pulse Compression Ultrasound Systems

    Full text link
    Pulse compression is often practiced in ultrasound Non Destructive Testing (NDT) systems using chirps. However, chirps are inadequate for setups where multiple probes need to operate concurrently in Multiple Input Multiple Output (MIMO) arrangements. Conversely, many coded excitation systems designed for MIMO miss some chirp advantages (constant envelope excitation, easiness of bandwidth control, etc.) and may not be easily implemented on hardware originally conceived for chirp excitations. Here, we propose a system based on random-FM excitations, capable of enabling MIMO with minimal changes with respect to a chirp-based setup. Following recent results, we show that random-FM excitations retain many advantages of chirps and provide the ability to frequency-shape the excitations matching the transducers features.Comment: 4 pages, 4 figures. Post-print from conference proceedings. Note that paper in conference proceedings at http://dx.doi.org/10.1109/ULTSYM.2012.0117 has some rendering issue

    Surface treatments for improving bond strength to prefabricated fiber posts: A literature review

    Get PDF
    This literature review summarizes the research on fiber post surface treatments and provides information related to their benefit in enhancing bond strength to composites, based on the results of original scientific full papers from peer-reviewed journals listed in Pub Med. The search was conducted using the terms "fiber post," "surface treatment" "surface conditioning," "etching" and "sandblasting." A consistent number of in vitro studies that investigated the surface treatment of fiber posts in an attempt to improve bond strength have been published to date. Their results have been summarized in the following categories: chemical treatments and micromechanical treatments of fiber post surfaces (or a combination of both principles). The majority of available literature data is based on studies that investigated different "chairside" post superficial treatments. According to the in vitro results, surface conditioning improves fiber post bonding properties, and the bond strength of pre-treated fiber posts to restorative materials is satisfactory. Long-term clinical studies are needed prior to making a general recommendation for their use

    Plasmon-enhanced second harmonic sensing

    Get PDF
    It has been recently suggested that the nonlinear optical processes in plasmonic nanoantennas allow for a substantial boost in the sensitivity of plasmonic sensing platforms. Here we present a sensing device based on an array of non-centrosymmetric plasmonic nanoantennas featuring enhanced second harmonic generation (SHG) integrated in a microfluidic chip. We evaluate its sensitivity both in the linear and nonlinear regime using a figure of merit (FOM = (ΔI/I)/Δn(\Delta I/I)/\Delta n) that accounts for the relative change in the measured intensity, \textit{I}, against the variation of the environmental refractive index \textit{n}. While the signal-to-noise ratio achieved in both regimes allows the detection of a minimum refractive index variation Δnmin≈10−3\Delta n_{min} \approx 10^{-3}, the platform operation in the nonlinear regime features a sensitivity (i.e. the FOM) that is at least 3 times higher than the linear one. Thanks to the surface sensitivity of plasmon-enhanced SHG, our results show that the development of such SHG sensing platforms with sensitivity performances exceeding those of their linear counterparts is within reach.Comment: 19 Pages, 5 Figure

    Stereocomplexation of Poly(Lactic Acid)s on Graphite Nanoplatelets: From Functionalized Nanoparticles to Self-assembled Nanostructures

    Get PDF
    The control of nanostructuration of graphene and graphene related materials (GRM) into self-assembled structures is strictly related to the nanoflakes chemical functionalization, which may be obtained via covalent grafting of non-covalent interactions, mostly exploiting π-stacking. As the non-covalent functionalization does not affect the sp2 carbon structure, this is often exploited to preserve the thermal and electrical properties of the GRM and it is a well-known route to tailor the interaction between GRM and organic media. In this work, non-covalent functionalization of graphite nanoplatelets (GnP) was carried out with ad-hoc synthesized pyrene-terminated oligomers of polylactic acid (PLA), aiming at the modification of GnP nanopapers thermal properties. PLA was selected based on the possibility to self-assemble in crystalline domains via stereocomplexation of complementary poly(L-lactide) (PLLA) and poly(D-lactide) (PDLA) enantiomers. Pyrene-initiated PLLA and PDLA were indeed demonstrated to anchor to the GnP surface. Calorimetric and X-ray diffraction investigations highlighted the enantiomeric PLAs adsorbed on the surface of the nanoplatelets self-organize to produce highly crystalline stereocomplex domains. Most importantly, PLLA/PDLA stereocomplexation delivered a significantly higher efficiency in nanopapers heat transfer, in particular through the thickness of the nanopaper. This is explained by a thermal bridging effect of crystalline domains between overlapped GnP, promoting heat transfer across the nanoparticles contacts. This work demonstrates the possibility to enhance the physical properties of contacts within a percolating network of GRM via the self-assembly of macromolecules and opens a new way for the engineering of GRM-based nanostructures

    Biocompatibility of a Magnetic Tunnel Junction Sensor Array for the Detection of Neuronal Signals in Culture

    Get PDF
    Magnetoencephalography has been established nowadays as a crucial in vivo technique for clinical and diagnostic applications due to its unprecedented spatial and temporal resolution and its non-invasive methods. However, the innate nature of the biomagnetic signals derived from active biological tissue is still largely unknown. One alternative possibility for in vitro analysis is the use of magnetic sensor arrays based on Magnetoresistance. However, these sensors have never been used to perform long-term in vitro studies mainly due to critical biocompatibility issues with neurons in culture. In this study, we present the first biomagnetic chip based on magnetic tunnel junction (MTJ) technology for cell culture studies and show the biocompatibility of these sensors. We obtained a full biocompatibility of the system through the planarization of the sensors and the use of a three-layer capping of SiO2/Si3N4/SiO2. We grew primary neurons up to 20 days on the top of our devices and obtained proper functionality and viability of the overlying neuronal networks. At the same time, MTJ sensors kept their performances unchanged for several weeks in contact with neurons and neuronal medium. These results pave the way to the development of high performing biomagnetic sensing technology for the electrophysiology of in vitro systems, in analogy with Multi Electrode Arrays
    • …
    corecore