16,377 research outputs found
Plasma physics abstracts, 1 January 1966 through 31 December 1967
Bibliography containing 26 references with abstracts on plasma physics research, 1966-196
Chow's theorem and universal holonomic quantum computation
A theorem from control theory relating the Lie algebra generated by vector
fields on a manifold to the controllability of the dynamical system is shown to
apply to Holonomic Quantum Computation. Conditions for deriving the holonomy
algebra are presented by taking covariant derivatives of the curvature
associated to a non-Abelian gauge connection. When applied to the Optical
Holonomic Computer, these conditions determine that the holonomy group of the
two-qubit interaction model contains . In particular, a
universal two-qubit logic gate is attainable for this model.Comment: 13 page
Independent Orbiter Assessment (IOA): Assessment of the remote manipulator system FMEA/CIL
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA effort first completed an analysis of the Remote Manipulator System (RMS) hardware, generating draft failure modes and potential critical items. To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The IOA results were than compared to the NASA FMEA/CIL baseline with proposed Post 51-L updates included. A resolution of each discrepancy from the comparison is provided through additional analysis as required. The results of that comparison for the Orbiter RMS hardware are documented. The IOA product for the RMS analysis consisted of 604 failure mode worksheets that resulted in 458 potential critical items being identified. Comparison was made to the NASA baseline which consisted of 45 FMEAs and 321 CIL items. This comparison produced agreement on all but 154 FMEAs which caused differences in 137 CIL items
Independent Orbiter Assessment (IOA): Analysis of the remote manipulator system
The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. The independent analysis results for the Orbiter Remote Manipulator System (RMS) are documented. The RMS hardware and software are primarily required for deploying and/or retrieving up to five payloads during a single mission, capture and retrieve free-flying payloads, and for performing Manipulator Foot Restraint operations. Specifically, the RMS hardware consists of the following components: end effector; displays and controls; manipulator controller interface unit; arm based electronics; and the arm. The IOA analysis process utilized available RMS hardware drawings, schematics and documents for defining hardware assemblies, components and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 574 failure modes analyzed, 413 were determined to be PCIs
Small scale structures in three-dimensional magnetohydrodynamic turbulence
We investigate using direct numerical simulations with grids up to 1536^3
points, the rate at which small scales develop in a decaying three-dimensional
MHD flow both for deterministic and random initial conditions. Parallel current
and vorticity sheets form at the same spatial locations, and further
destabilize and fold or roll-up after an initial exponential phase. At high
Reynolds numbers, a self-similar evolution of the current and vorticity maxima
is found, in which they grow as a cubic power of time; the flow then reaches a
finite dissipation rate independent of Reynolds number.Comment: 4 pages, 3 figure
Apparent suppression of turbulent magnetic dynamo action by a dc magnetic field
Numerical studies of the effect of a dc magnetic field on dynamo action
(development of magnetic fields with large spatial scales), due to
helically-driven magnetohydrodynamic turbulence, are reported. The apparent
effect of the dc magnetic field is to suppress the dynamo action, above a
relatively low threshold. However, the possibility that the suppression results
from an improper combination of rectangular triply spatially-periodic boundary
conditions and a uniform dc magnetic field is addressed: heretofore a common
and convenient computational convention in turbulence investigations. Physical
reasons for the observed suppression are suggested. Other geometries and
boundary conditions are offered for which the dynamo action is expected not to
be suppressed by the presence of a dc magnetic field component.Comment: To appear in Physics of Plasma
- …