35 research outputs found
Increased functional coupling between VTA and hippocampus during rest in first-episode psychosis
Animal models suggest that interactions between the hippocampus and ventral tegmental area (VTA) underlie the onset and etiology of psychosis. While a large body of research has separately characterized alterations in hippocampal and VTA function in psychosis, alterations across the VTA and hippocampus have not been characterized in first-episode psychosis (FEP). As the phase of psychosis most proximal to conversion, studies specifically focused on FEP are valuable to psychosis research. Here, we characterize alterations in VTA-hippocampal interactions across male and female human participants experiencing their first episode of psychosis using resting state functional magnetic resonance imaging (rsfMRI). In comparison to age and sex matched healthy controls (HCs), FEP individuals had significantly greater VTA-hippocampal functional coupling but significantly less VTA-striatal functional coupling. Further, increased VTA-hippocampal functional coupling in FEP correlated with individual differences in psychosis-related symptoms. Together, these findings demonstrate alterations in mesolimbic-hippocampal circuits in FEP and extend prominent animal models of psychosis
Hippocampus guides adaptive learning during dynamic social interactions
How do we evaluate whether someone will make a good friend or collaborative peer? A hallmark of human cognition is the ability to make adaptive decisions based on information garnered from limited prior experiences. Using an interactive social task measuring adaptive choice (deciding who to reengage or avoid) in male and female participants, we find the hippocampus supports value-based social choices following single-shot learning. These adaptive choices elicited a suppression signal in the hippocampus, revealing sensitivity for the subjective perception of a person and how well they treat you during choice. The extent to which the hippocampus was suppressed was associated with flexibly interacting with prior generous individuals and avoiding selfish individuals. Further, we found that hippocampal signals during decision-making were related to subsequent memory for a person and the offer they made before. Consistent with the hippocampus leveraging previously executed choices to solidify a reliable neural signature for future adaptive behavior, we also observed a later hippocampal enhancement. These findings highlight the hippocampus playing a multifaceted role in socially adaptive learning
Naturalistic language input is associated with resting-state functional connectivity in infancy
The quantity and quality of the language input that infants receive from their caregivers affects their future language abilities; however, it is unclear how variation in this input relates to preverbal brain circuitry. The current study investigated the relation between naturalistic language input and the functional connectivity (FC) of language networks in human infancy using resting-state functional magnetic resonance imaging (rsfMRI). We recorded the naturalistic language environments of five- to eight-month-old male and female infants using the Linguistic ENvironment Analysis (LENA) system and measured the quantity and consistency of their exposure to adult words (AWs) and adult-infant conversational turns (CTs). Infants completed an rsfMRI scan during natural sleep, and we examined FC among regions of interest (ROIs) previously implicated in language comprehension, including the auditory cortex, the left inferior frontal gyrus (IFG), and the bilateral superior temporal gyrus (STG). Consistent with theory of the ontogeny of the cortical language network (Skeide and Friederici, 2016), we identified two subnetworks posited to have distinct developmental trajectories: a posterior temporal network involving connections of the auditory cortex and bilateral STG and a frontotemporal network involving connections of the left IFG. Independent of socioeconomic status (SES), the quantity of CTs was uniquely associated with FC of these networks. Infants who engaged in a larger number of CTs in daily life had lower connectivity in the posterior temporal language network. These results provide evidence for the role of vocal interactions with caregivers, compared with overheard adult speech, in the function of language networks in infancy
Using synthetic MR images for distortion correction
Functional MRI (fMRI) data acquired using echo-planar imaging (EPI) are highly distorted by magnetic field inhomogeneities. Distortion and differences in image contrast between EPI and T1-weighted and T2-weighted (T1w/T2w) images makes their alignment a challenge. Typically, field map data are used to correct EPI distortions. Alignments achieved with field maps can vary greatly and depends on the quality of field map data. However, many public datasets lack field map data entirely. Additionally, reliable field map data is often difficult to acquire in high-motion pediatric or developmental cohorts. To address this, we developed Synth, a software package for distortion correction and cross-modal image registration that does not require field map data. Synth combines information from T1w and T2w anatomical images to construct an idealized undistorted synthetic image with similar contrast properties to EPI data. This synthetic image acts as an effective reference for individual-specific distortion correction. Using pediatric (ABCD: Adolescent Brain Cognitive Development) and adult (MSC: Midnight Scan Club; HCP: Human Connectome Project) data, we demonstrate that Synth performs comparably to field map distortion correction approaches, and often outperforms them. Field map-less distortion correction with Synth allows accurate and precise registration of fMRI data with missing or corrupted field map information
Real-time motion monitoring improves functional MRI data quality in infants
Imaging the infant brain with MRI has improved our understanding of early neurodevelopment. However, head motion during MRI acquisition is detrimental to both functional and structural MRI scan quality. Though infants are typically scanned while asleep, they commonly exhibit motion during scanning causing data loss. Our group has shown that providing MRI technicians with real-time motion estimates via Framewise Integrated Real-Time MRI Monitoring (FIRMM) software helps obtain high-quality, low motion fMRI data. By estimating head motion in real time and displaying motion metrics to the MR technician during an fMRI scan, FIRMM can improve scanning efficiency. Here, we compared average framewise displacement (FD), a proxy for head motion, and the amount of usable fMRI data (FD ≤ 0.2 mm) in infants scanned with (n = 407) and without FIRMM (n = 295). Using a mixed-effects model, we found that the addition of FIRMM to current state-of-the-art infant scanning protocols significantly increased the amount of usable fMRI data acquired per infant, demonstrating its value for research and clinical infant neuroimaging
Parallel hippocampal-parietal circuits for self- and goal-oriented processing
The hippocampus is critically important for a diverse range of cognitive processes, such as episodic memory, prospective memory, affective processing, and spatial navigation. Using individual-specific precision functional mapping of resting-state functional MRI data, we found the anterior hippocampus (head and body) to be preferentially functionally connected to the default mode network (DMN), as expected. The hippocampal tail, however, was strongly preferentially functionally connected to the parietal memory network (PMN), which supports goal-oriented cognition and stimulus recognition. This anterior-posterior dichotomy of resting-state functional connectivity was well-matched by differences in task deactivations and anatomical segmentations of the hippocampus. Task deactivations were localized to the hippocampal head and body (DMN), relatively sparing the tail (PMN). The functional dichotomization of the hippocampus into anterior DMN-connected and posterior PMN-connected parcels suggests parallel but distinct circuits between the hippocampus and medial parietal cortex for self- versus goal-oriented processing
Accuracy and reliability of diffusion imaging models
Diffusion imaging aims to non-invasively characterize the anatomy and integrity of the brain\u27s white matter fibers. We evaluated the accuracy and reliability of commonly used diffusion imaging methods as a function of data quantity and analysis method, using both simulations and highly sampled individual-specific data (927-1442 diffusion weighted images [DWIs] per individual). Diffusion imaging methods that allow for crossing fibers (FSL\u27s BedpostX [BPX], DSI Studio\u27s Constant Solid Angle Q-Ball Imaging [CSA-QBI], MRtrix3\u27s Constrained Spherical Deconvolution [CSD]) estimated excess fibers when insufficient data were present and/or when the data did not match the model priors. To reduce such overfitting, we developed a novel Bayesian Multi-tensor Model-selection (BaMM) method and applied it to the popular ball-and-stick model used in BedpostX within the FSL software package. BaMM was robust to overfitting and showed high reliability and the relatively best crossing-fiber accuracy with increasing amounts of diffusion data. Thus, sufficient data and an overfitting resistant analysis method enhance precision diffusion imaging. For potential clinical applications of diffusion imaging, such as neurosurgical planning and deep brain stimulation (DBS), the quantities of data required to achieve diffusion imaging reliability are lower than those needed for functional MRI
A somato-cognitive action network alternates with effector regions in motor cortex
Motor cortex (M1) has been thought to form a continuous somatotopic homunculus extending down the precentral gyrus from foot to face representation
MEG resting state functional connectivity in Parkinson's disease related dementia
Parkinson's disease (PD) related dementia (PDD) develops in up to 60% of patients, but the pathophysiology is far from being elucidated. Abnormalities of resting state functional connectivity have been reported in Alzheimer's disease (AD). The present study was performed to determine whether PDD is likewise characterized by changes in resting state functional connectivity. MEG recordings were obtained in 13 demented and 13 non-demented PD patients. The synchronization likelihood (SL) was calculated within and between cortical areas in six frequency bands. Compared to non-demented PD, PDD was characterized by lower fronto-temporal SL in the alpha range, lower intertemporal SL in delta, theta and alpha1 bands as well as decreased centro-parietal gamma band synchronization. In addition, higher parieto-occipital synchronization in the alpha2 and beta bands was found in PDD. The observed changes in functional connectivity are reminiscent of changes in AD, and may reflect reduced cholinergic activity and/or loss of cortico-cortical anatomical connections in PDD. © 2008 The Author(s)