26 research outputs found

    Organotypic cultures as tools for optimizing central nervous system cell therapies

    Get PDF
    Stem cell therapy is a promising treatment for neurological disorders such as cerebral ischemia, Parkinson\u27s disease and Huntington\u27s disease. In recent years, many clinical trials with various cell types have been performed often showing mixed results. Major problems with cell therapies are the limited cell availability and engraftment and the reduced integration of grafted cells into the host tissue. Stem cell-based therapies can provide a limitless source of cells but survival and differentiation remain a drawback. An improved understanding of the behaviour of stem cells and their interaction with the host tissue, upon implantation, is needed to maximize the therapeutic potential of stem cells in neurological disorders. Organotypic cultures made from brain slices from specific brain regions that can be kept in culture for several weeks after injecting molecules or cells represent a remarkable tool to address these issues. This model allows the researcher to monitor/assess the behaviour and responses of both the endogenous as well as the implanted cells and their interaction with the microenvironment leading to cell engraftment. Moreover, organotypic cultures could be useful to partially model the pathological state of a disease in the brain and to study graft-host interactions prior to testing such grafts for pre-clinical applications. Finally, they can be used to test the therapeutic potential of stem cells when combined with scaffolds, or other therapeutic enhancers, among other aspects, needed to develop novel successful therapeutic strategies or improve on existing ones

    Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules

    Get PDF
    Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, "marrow-isolated adult multilineage inducible" (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB

    Modeling nigrostriatal degeneration in organotypic cultures, a new ex vivo model of Parkinson’s disease

    Get PDF
    Parkinson’s disease (PD) is the second most frequent neurodegenerative disorder afflicting 2% of the population older than 65 years worldwide. Recently, brain organotypic slices have been used to model neurodegenerative disorders, including PD. They conserve brain three-dimensional architecture, synaptic connectivity and its microenvironment. This model has allowed researchers a simple and rapid method to observe cellular interactions and mechanisms. In the present study, we developed an organotypic PD model from rat brains that includes all the areas involved in the nigrostriatal pathway in a single slice preparation, without using neurotoxins to induce the dopaminergic lesion. The mechanical transection of the nigrostriatal pathway obtained during slice preparation induced PD-like histopathology. Progressive nigrostriatal degeneration was monitored combining innovative approaches, such as diffusion tensor magnetic resonance imaging (DT-RMI) to follow fiber degeneration and mass spectrometry to quantify striatal dopamine content, together with bright-field and fluorescence microscopy imaging. A substantia nigra dopaminergic cell number decrease was observed by immunohistochemistry against rat tyrosine hydroxylase (TH) reaching 80% after 2 days in culture associated with a 30% decrease of striatal TH-positive fiber density, a 15% loss of striatal dopamine content quantified by mass spectrometry and a 70% reduction of nigrostriatal fiber fractional anisotropy quantified by DT-RMI. In addition, a significant decline of medium spiny neuron density was observed from days 7 to 16. These sagittal organotypic slices could be used to study the early stage of PD, namely dopaminergic degeneration, and the late stage of the pathology with dopaminergic and GABAergic neuron loss. This novel model might improve the understanding of PD and may represent a promising tool to refine the evaluation of new therapeutic approaches

    Survival, differentiation, and neuroprotective mechanisms of human stem cells complexed with neurotrophin-3-releasing pharmacologically active microcarriers in an ex vivo model of parkinson’s disease

    Get PDF
    © AlphaMed Press 2015. Stem cell-based regenerative therapies hold great potential for the treatment of degenerative disorders such as Parkinson’s disease (PD). We recently reported the repair and functional recovery after treatment with human marrow-isolated adult multilineage inducible (MIAMI) cells adhered to neurotrophin-3 (NT3) releasing pharmacologically active microcarriers (PAMs) in hemiparkinsonian rats. In order to comprehend this effect, the goal of the present work was to elucidate the survival, differentiation, and neuroprotective mechanisms of MIAMI cells and human neural stem cells (NSCs), both adhering to NT3-releasing PAMs in an ex vivo organotypic model of nigrostriatal degeneration made from brain sagittal slices. It was shown that PAMs led to a marked increase in MIAMI cell survival and neuronal differentiation when releasing NT3. A significant neuroprotective effect of MIAMI cells adhering to PAMs was also demonstrated. NSCs barely had a neuroprotective effect and differentiated mostly into dopaminergic neuronal cells when adhering to PAM-NT3. Moreover, those cells were able to release dopamine in a sufficient amount to induce a return to baseline levels. Reverse transcription-quantitative polymerase chain reaction and enzyme-linked immunosorbent assay analyses identified vascular endothelial growth factor (VEGF) and stanniocalcin-1 as potential mediators of the neuroprotective effect of MIAMI cells and NSCs, respectively. It was also shown that VEGF locally stimulated tissue vascularization, which might improve graft survival, without excluding a direct neuroprotective effect of VEGF on dopaminergic neurons. These results indicate a prospective interest of human NSC/PAM and MIAMI cell/PAM complexes in tissue engineering for PD.Spanish Ministry of Economy and Competitiveness (Grant SAF2010-17167), a grant from the Comunidad de Madrid (Grant S2011-BMD-2336), and Instituto de Salud Carlos III (Redes Tematicas de Investigacion Cooperativa en Salud RD12/0019/0013) to A.M.S.Peer Reviewe
    corecore