6,479 research outputs found

    Narrowband Photon Pair Source for Quantum Networks

    Full text link
    We demonstrate a compact photon pair source based on a periodically poled lithium niobate nonlinear crystal in a cavity. The cavity parameters are chosen such that the emitted photon pair modes can be matched in the region of telecom ultra dense wavelength division multiplexing (U-DWDM) channel spacings. This approach provides efficient, low-loss, mode selection that is compatible with standard telecommunication networks. Photons with a coherence time of 8.6 ns (116 MHz) are produced and their purity is demonstrated. A source brightness of 134 pairs(s.mW.MHz)1^{-1} is reported. The high level of purity and compatibility with standard telecom networks is of great importance for complex quantum communication networks

    Fractional \hbar-scaling for quantum kicked rotors without cantori

    Get PDF
    Previous studies of quantum delta-kicked rotors have found momentum probability distributions with a typical width (localization length LL) characterized by fractional \hbar-scaling, ie L2/3L \sim \hbar^{2/3} in regimes and phase-space regions close to `golden-ratio' cantori. In contrast, in typical chaotic regimes, the scaling is integer, L1L \sim \hbar^{-1}. Here we consider a generic variant of the kicked rotor, the random-pair-kicked particle (RP-KP), obtained by randomizing the phases every second kick; it has no KAM mixed phase-space structures, like golden-ratio cantori, at all. Our unexpected finding is that, over comparable phase-space regions, it also has fractional scaling, but L2/3L \sim \hbar^{-2/3}. A semiclassical analysis indicates that the 2/3\hbar^{2/3} scaling here is of quantum origin and is not a signature of classical cantori.Comment: 5 pages, 4 figures, Revtex, typos removed, further analysis added, authors adjuste

    Synthesis of sub-5 nm Co-doped SnO2_2 nanoparticles and their structural, microstructural, optical and photocatalytic properties

    Full text link
    A swift chemical route to synthesize Co-doped SnO2_2 nanopowders is described. Pure and highly stable Sn1x_{1-x}Cox_xO2δ_{2-\delta} (0 \le x \le 0.15) crystalline nanoparticles were synthesized, with mean grain sizes < 5 nm and the dopant element homogeneously distributed in substitutional sites of the SnO2_2 matrix. The UV-visible diffuse reflectance spectra of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The Urbach energies of the samples were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95_{0.95}Co0.05_{0.05}O2δ_{2-\delta} nanoparticles in 60 min of irradiation.Comment: 29 pages, 2 tables, 10 figure
    corecore