7,873 research outputs found

    Negative modes and the thermodynamics of Reissner-Nordstr\"om black holes

    Full text link
    We analyse the problem of negative modes of the Euclidean section of the Reissner-Nordstr\"om black hole in four dimensions. We find analytically that a negative mode disappears when the specific heat at constant charge becomes positive. The sector of perturbations analysed here is included in the canonical partition function of the magnetically charged black hole. The result obeys the usual rule that the partition function is only well-defined when there is local thermodynamical equilibrium. We point out the difficulty in quantising Einstein-Maxwell theory, where the so-called conformal factor problem is considerably more intricate. Our method, inspired by hep-th/0608001, allows us to decouple the divergent gauge volume and treat the metric perturbations sector in a gauge-invariant way.Comment: 24 pages, 1 figure; v2 minor changes to fit published versio

    A Multi-Membership Catalogue for 1876 Open Clusters using UCAC4 data

    Full text link
    The main objective of this work is to determine the cluster members of 1876 open clusters, using positions and proper motions of the astrometric catalogue UCAC4. For this purpose we apply three different methods, all them based on a Bayesian approach, but with different formulations: a purely parametric method, another completely non-parametric algorithm, and a third, recently developed by Sampedro & Alfaro, using both formulations at different steps of the whole process. The first and second statistical moments of the members phase-space subspace, obtained after applying the three methods, are compared for every cluster. Although, on average, the three methods yield similar results, specific differences between them, as well as for some particular clusters, are also present. The comparison with other published catalogues shows good agreement. We have also estimated for the first time the mean proper motion for a sample of 18 clusters. The results are organized in a single catalogue formed by two main files, one with the most relevant information for each cluster, partially including that in UCAC4, and the other showing the individual membership probabilities for each star in the cluster area. The final catalogue, with an interface design that enables an easy interaction with the user, is available in electronic format at SSG-IAA (http://ssg.iaa.es/en/content/sampedro-cluster-catalog) website.Comment: Accepted for publication in MNRAS. 9 pages, 3 figures, 6 table

    Instability and new phases of higher-dimensional rotating black holes

    Get PDF
    It has been conjectured that higher-dimensional rotating black holes become unstable at a sufficiently large value of the rotation, and that new black holes with pinched horizons appear at the threshold of the instability. We search numerically, and find, the stationary axisymmetric perturbations of Myers-Perry black holes with a single spin that mark the onset of the instability and the appearance of the new black hole phases. We also find new ultraspinning Gregory-Laflamme instabilities of rotating black strings and branes.Comment: 5 pages, 5 figures. The instability of the black hole is argued to appear at the second zero mode. The first zero mode is not associated to a new branch of black hole solution

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page

    Classical diffusion in double-delta-kicked particles

    Full text link
    We investigate the classical chaotic diffusion of atoms subjected to {\em pairs} of closely spaced pulses (`kicks) from standing waves of light (the 2δ2\delta-KP). Recent experimental studies with cold atoms implied an underlying classical diffusion of type very different from the well-known paradigm of Hamiltonian chaos, the Standard Map. The kicks in each pair are separated by a small time interval ϵ1\epsilon \ll 1, which together with the kick strength KK, characterizes the transport. Phase space for the 2δ2\delta-KP is partitioned into momentum `cells' partially separated by momentum-trapping regions where diffusion is slow. We present here an analytical derivation of the classical diffusion for a 2δ2\delta-KP including all important correlations which were used to analyze the experimental data. We find a new asymptotic (tt \to \infty) regime of `hindered' diffusion: while for the Standard Map the diffusion rate, for K1K \gg 1, DK2/2[1J2(K)..]D \sim K^2/2[1- J_2(K)..] oscillates about the uncorrelated, rate D0=K2/2D_0 =K^2/2, we find analytically, that the 2δ2\delta-KP can equal, but never diffuses faster than, a random walk rate. We argue this is due to the destruction of the important classical `accelerator modes' of the Standard Map. We analyze the experimental regime 0.1Kϵ10.1\lesssim K\epsilon \lesssim 1, where quantum localisation lengths L0.75L \sim \hbar^{-0.75} are affected by fractal cell boundaries. We find an approximate asymptotic diffusion rate DK3ϵD\propto K^3\epsilon, in correspondence to a DK3D\propto K^3 regime in the Standard Map associated with 'golden-ratio' cantori.Comment: 14 pages, 10 figures, error in equation in appendix correcte
    corecore