6,626 research outputs found

    Tuning the Mott transition in a Bose-Einstein condensate by multi-photon absorption

    Get PDF
    We study the time-dependent dynamics of a Bose-Einstein condensate trapped in an optical lattice. Modeling the system as a Bose-Hubbard model, we show how applying a periodic driving field can induce coherent destruction of tunneling. In the low-frequency regime, we obtain the novel result that the destruction of tunneling displays extremely sharp peaks when the driving frequency is resonant with the depth of the trapping potential (``multi-photon resonances''), which allows the quantum phase transition between the Mott insulator and the superfluid state to be controlled with high precision. We further show how the waveform of the field can be chosen to maximize this effect.Comment: Minor changes, this version to be published in Phys. Rev. Let

    Fitting isochrones to open cluster photometric data III. Estimating metallicities from UBV photometry

    Full text link
    The metallicity is a critical parameter that affects the correct determination fundamental characteristics stellar cluster and has important implications in Galactic and Stellar evolution research. Fewer than 10 % of the 2174 currently catalog open clusters have their metallicity determined in the literature. In this work we present a method for estimating the metallicity of open clusters via non-subjective isochrone fitting using the cross-entropy global optimization algorithm applied to UBV photometric data. The free parameters distance, reddening, age, and metallicity simultaneously determined by the fitting method. The fitting procedure uses weights for the observational data based on the estimation of membership likelihood for each star, which considers the observational magnitude limit, the density profile of stars as a function of radius from the center of the cluster, and the density of stars in multi-dimensional magnitude space. We present results of [Fe/H] for nine well-studied open clusters based on 15 distinct UBV data sets. The [Fe/H] values obtained in the ten cases for which spectroscopic determinations were available in the literature agree, indicating that our method provides a good alternative to determining [Fe/H] by using an objective isochrone fitting. Our results show that the typical precision is about 0.1 dex

    Chaotic quantum ratchets and filters with cold atoms in optical lattices: properties of Floquet states

    Get PDF
    Recently, cesium atoms in optical lattices subjected to cycles of unequally-spaced pulses have been found to show interesting behavior: they represent the first experimental demonstration of a Hamiltonian ratchet mechanism, and they show strong variability of the Dynamical Localization lengths as a function of initial momentum. The behavior differs qualitatively from corresponding atomic systems pulsed with equal periods, which are a textbook implementation of a well-studied quantum chaos paradigm, the quantum delta-kicked particle (delta-QKP). We investigate here the properties of the corresponding eigenstates (Floquet states) in the parameter regime of the new experiments and compare them with those of the eigenstates of the delta-QKP at similar kicking strengths. We show that, with the properties of the Floquet states, we can shed light on the form of the observed ratchet current as well as variations in the Dynamical Localization length.Comment: 9 pages, 9 figure

    2δ2\delta-Kicked Quantum Rotors: Localization and `Critical' Statistics

    Get PDF
    The quantum dynamics of atoms subjected to pairs of closely-spaced δ\delta-kicks from optical potentials are shown to be quite different from the well-known paradigm of quantum chaos, the singly-δ\delta-kicked system. We find the unitary matrix has a new oscillating band structure corresponding to a cellular structure of phase-space and observe a spectral signature of a localization-delocalization transition from one cell to several. We find that the eigenstates have localization lengths which scale with a fractional power L.75L \sim \hbar^{-.75} and obtain a regime of near-linear spectral variances which approximate the `critical statistics' relation Σ2(L)χL1/2(1ν)L\Sigma_2(L) \simeq \chi L \approx {1/2}(1-\nu) L, where ν0.75\nu \approx 0.75 is related to the fractal classical phase-space structure. The origin of the ν0.75\nu \approx 0.75 exponent is analyzed.Comment: 4 pages, 3 fig

    Dynamical instability in kicked Bose-Einstein condensates: Bogoliubov resonances

    Full text link
    Bose-Einstein condensates subject to short pulses (`kicks') from standing waves of light represent a nonlinear analogue of the well-known chaos paradigm, the quantum kicked rotor. Previous studies of the onset of dynamical instability (ie exponential proliferation of non-condensate particles) suggested that the transition to instability might be associated with a transition to chaos. Here we conclude instead that instability is due to resonant driving of Bogoliubov modes. We investigate the excitation of Bogoliubov modes for both the quantum kicked rotor (QKR) and a variant, the double kicked rotor (QKR-2). We present an analytical model, valid in the limit of weak impulses which correctly gives the scaling properties of the resonances and yields good agreement with mean-field numerics.Comment: 8 page

    Structural and optical properties of europium doped zirconia single crystals fibers grown by laser floating zone

    Get PDF
    Yttria stabilized zirconia single crystal fibers doped with europium ions were developed envisaging optical applications. The laser floating zone technique was used in order to grow millimetric high quality single crystal fibers. The as-grown fibers are completely transparent and inclusion free, exhibiting a cubic structure. Under ultraviolet (UV) excitation, a broad emission band appears at 551 nm. The europium doped fibers are translucent with a tetragonal structure and exhibit an intense red emission at room temperature under UV excitation. The fingerprint transition lines between the 5D0 and 7FJ(0–4) multiplets of the Eu3+ ions are observed with the main emission line at ∼ 606 nm due to 5D0→7F2 transition. Photoluminescence excitation and wavelength dependent the photoluminescence spectra confirm the existence of different Eu3+ optical centers. © 2011 American Institute of PhysicsFCT-PTDC/CTM/66195/2006FCT-SFRH/BD/45774/200

    Synthesis of sub-5 nm Co-doped SnO2_2 nanoparticles and their structural, microstructural, optical and photocatalytic properties

    Full text link
    A swift chemical route to synthesize Co-doped SnO2_2 nanopowders is described. Pure and highly stable Sn1x_{1-x}Cox_xO2δ_{2-\delta} (0 \le x \le 0.15) crystalline nanoparticles were synthesized, with mean grain sizes < 5 nm and the dopant element homogeneously distributed in substitutional sites of the SnO2_2 matrix. The UV-visible diffuse reflectance spectra of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples reveal red shifts, the optical bandgap energies decreasing with increasing Co concentration. The Urbach energies of the samples were calculated and correlated with their bandgap energies. The photocatalytic activity of the Sn1x_{1-x}Cox_xO2δ_{2-\delta} samples was investigated for the 4-hydroxylbenzoic acid (4-HBA) degradation process. A complete photodegradation of a 10 ppm 4-HBA solution was achieved using 0.02% (w/w) of Sn0.95_{0.95}Co0.05_{0.05}O2δ_{2-\delta} nanoparticles in 60 min of irradiation.Comment: 29 pages, 2 tables, 10 figure
    corecore