9 research outputs found

    Tear Cytokine Levels in Contact Lens Wearers With Acanthamoeba Keratitis

    Get PDF
    PURPOSE: To determine differences in key tear film cytokines between mild and severe cases of acanthamoeba keratitis (AK) and control contact lens (CL) wearers. METHODS: This was a prospective study of CL wearers with AK attending Moorfields Eye Hospital and control CL wearers from the Institute of Optometry, London. Basal tear specimens were collected by 10-ÎŒL capillary tubes (BLAUBRAND intraMark, Wertheim, Germany), and tear protein levels were measured with a multiplex magnetic bead array (Luminex 100; Luminex Corporation, Austin, TX) for cytokines interleukin (IL)-1ÎČ, IL-6, IL-8, IL-10, IL-17A, IL-17E, IL-17F, IL-22, and interferon gamma and with enzyme-linked immunosorbent assay (Abcam, Cambridge, United Kingdom) for CXCL2. Severe cases of AK were defined as having active infection for over 12 months and at least 1 severe inflammatory event. RESULTS: One hundred and thirty-two tear samples were collected from a total of 61 cases (15 severe and 46 mild–moderate) and 22 controls. IL-8, part of the Toll-like receptor 4 cytokine cascade, was found to be expressed at a detectable level more often in cases of AK than in control CL wearers (P = 0.003) and in higher concentrations in severe cases than in milder forms of the disease (z = −2.35). IL-22, part of the IL-10 family, and a proinflammatory Th17 cytokine, was detected more often in severe cases than in milder forms of AK (P < 0.02). CONCLUSIONS: Profiling patients with AK during disease shows differences in cytokine levels between severe and milder disease that may inform clinical management. The Toll-like receptor 4 and IL-10/Th17 inflammatory pathways should be included in further investigations of this disease

    The Sr isotope chemostratigraphy as a tool for solving stratigraphic problems of the Upper Proterozoic (Riphean and Vendian)

    No full text

    A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype

    Get PDF
    <div><p>Here, we describe an engineering approach to quantitatively compare migration, morphologies, and adhesion for tumorigenic human fibrosarcoma cells (HT-1080s) and primary human dermal fibroblasts (hDFs) with the aim of identifying distinguishing properties of the transformed phenotype. Relative adhesiveness was quantified using self-assembled monolayer (SAM) arrays and proteolytic 3-dimensional (3D) migration was investigated using matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) (PEG) hydrogels (“synthetic extracellular matrix” or “synthetic ECM”). In synthetic ECM, hDFs were characterized by vinculin-containing features on the tips of protrusions, multipolar morphologies, and organized actomyosin filaments. In contrast, HT-1080s were characterized by diffuse vinculin expression, pronounced ÎČ1-integrin on the tips of protrusions, a cortically-organized F-actin cytoskeleton, and quantitatively more rounded morphologies, decreased adhesiveness, and increased directional motility compared to hDFs. Further, HT-1080s were characterized by contractility-dependent motility, pronounced blebbing, and cortical contraction waves or constriction rings, while quantified 3D motility was similar in matrices with a wide range of biochemical and biophysical properties (including collagen) despite substantial morphological changes. While HT-1080s were distinct from hDFs for each of the 2D and 3D properties investigated, several features were similar to WM239a melanoma cells, including rounded, proteolytic migration modes, cortical F-actin organization, and prominent uropod-like structures enriched with ÎČ1-integrin, F-actin, and melanoma cell adhesion molecule (MCAM/CD146/MUC18). Importantly, many of the features observed for HT-1080s were analogous to cellular changes induced by transformation, including cell rounding, a disorganized F-actin cytoskeleton, altered organization of focal adhesion proteins, and a weakly adherent phenotype. Based on our results, we propose that HT-1080s migrate in synthetic ECM with functional properties that are a direct consequence of their transformed phenotype. </p> </div

    Microengineered tumor models: insights & opportunities from a physical sciences-oncology perspective

    No full text

    A Quantitative Comparison of Human HT-1080 Fibrosarcoma Cells and Primary Human Dermal Fibroblasts Identifies a 3D Migration Mechanism with Properties Unique to the Transformed Phenotype

    No full text

    Measuring performance on the Healthcare Access and Quality Index for 195 countries and territories and selected subnational locations: A systematic analysis from the Global Burden of Disease Study 2016

    No full text
    corecore