6,154 research outputs found
Dynamic Congruence vs. Progressing Bisimulation for CCS
Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g. \alpha.\tau.\beta.nil and \alpha.\beta.nil are woc but \tau.\beta.nil and \beta.nil are not. This fact prevent us from characterizing CCS semantics (when \tau is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e. run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two logical characterizations via modal logic in the style of HML and a complete axiomatization for finite agents (consisting of the axioms for Strong Observational Congruence and of two of the three Milner's -laws). Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents
CCS Dynamic Bisimulation is Progressing
Weak Observational Congruence (woc) defined on CCS agents is not a bisimulation since it does not require two states reached by bisimilar computations of woc agents to be still woc, e.g.\ and are woc but and are not. This fact prevents us from characterizing CCS semantics (when is considered invisible) as a final algebra, since the semantic function would induce an equivalence over the agents that is both a congruence and a bisimulation. In the paper we introduce a new behavioural equivalence for CCS agents, which is the coarsest among those bisimulations which are also congruences. We call it Dynamic Observational Congruence because it expresses a natural notion of equivalence for concurrent systems required to simulate each other in the presence of dynamic, i.e.\ run time, (re)configurations. We provide an algebraic characterization of Dynamic Congruence in terms of a universal property of finality. Furthermore we introduce Progressing Bisimulation, which forces processes to simulate each other performing explicit steps. We provide an algebraic characterization of it in terms of finality, two characterizations via modal logic in the style of HML, and a complete axiomatization for finite agents. Finally, we prove that Dynamic Congruence and Progressing Bisimulation coincide for CCS agents. Thus the title of the paper
On the Semantics of Petri Nets
Petri Place/Transition (PT) nets are one of the most widely used models of concurrency. However, they still lack, in our view, a satisfactory semantics: on the one hand the "token game"' is too intensional, even in its more abstract interpretations in term of nonsequential processes and monoidal categories; on the other hand, Winskel's basic unfolding construction, which provides a coreflection between nets and finitary prime algebraic domains, works only for safe nets. In this paper we extend Winskel's result to PT nets. We start with a rather general category {PTNets} of PT nets, we introduce a category {DecOcc} of decorated (nondeterministic) occurrence nets and we define adjunctions between {PTNets} and {DecOcc} and between {DecOcc} and {Occ}, the category of occurrence nets. The role of {DecOcc} is to provide natural unfoldings for PT nets, i.e. acyclic safe nets where a notion of family is used for relating multiple instances of the same place. The unfolding functor from {PTNets} to {Occ} reduces to Winskel's when restricted to safe nets, while the standard coreflection between {Occ} and {Dom}, the category of finitary prime algebraic domains, when composed with the unfolding functor above, determines a chain of adjunctions between {PTNets} and {Dom}
Representation Theorems for Petri Nets
This paper retraces, collects, summarises, and mildly extends the contributions of the authors --- both together and individually --- on the theme of representing the space of computations of Petri nets in its mathematical essence
ω-Inductive completion of monoidal categories and infinite petri net computations
There exists a KZ-doctrine on the 2-category of the locally small categories whose algebras are exactly the categories which admits all the colimits indexed by ω-chains. The paper presents a wide survey of this topic. In addition, we show that this chain cocompletion KZ-doctrine lifts smoothly to KZ-doctrines on (many variations of) the 2-categories of monoidal and symmetric monoidal categories, thus yielding a universal construction of colimits of ω-chains in those categories. Since the processes of Petri nets may be axiomatized in terms of symmetric monoidal categories this result provides a universal construction of the algebra of infinite processes of a Petri net
On the Model of Computation of Place/Transition Petri Nets
In the last few years, the semantics of Petri nets has been investigated in several different ways. Apart from the classical "token game", one can model the behaviour of Petri nets via non-sequential processes, via unfolding constructions, which provide formal relationships between nets and domains, and via algebraic models, which view Petri nets as essentially algebraic theories whose models are monoidal categories. In this paper we show that these three points of view can be reconciled. More precisely, we introduce the new notion of decorated processes of Petri nets and we show that they induce on nets the same semantics as that of unfolding. In addition, we prove that the decorated processes of a net N can be axiomatized as the arrows of a symmetric monoidal category which, therefore, provides the aforesaid unification
Begin, After, and Later: a Maximal Decidable Interval Temporal Logic
Interval temporal logics (ITLs) are logics for reasoning about temporal
statements expressed over intervals, i.e., periods of time. The most famous ITL
studied so far is Halpern and Shoham's HS, which is the logic of the thirteen
Allen's interval relations. Unfortunately, HS and most of its fragments have an
undecidable satisfiability problem. This discouraged the research in this area
until recently, when a number non-trivial decidable ITLs have been discovered.
This paper is a contribution towards the complete classification of all
different fragments of HS. We consider different combinations of the interval
relations Begins, After, Later and their inverses Abar, Bbar, and Lbar. We know
from previous works that the combination ABBbarAbar is decidable only when
finite domains are considered (and undecidable elsewhere), and that ABBbar is
decidable over the natural numbers. We extend these results by showing that
decidability of ABBar can be further extended to capture the language
ABBbarLbar, which lays in between ABBar and ABBbarAbar, and that turns out to
be maximal w.r.t decidability over strongly discrete linear orders (e.g. finite
orders, the naturals, the integers). We also prove that the proposed decision
procedure is optimal with respect to the complexity class
Functorial Semantics for Petri Nets under the Individual Token Philosophy
Although the algebraic semantics of place/transition Petri nets under the collective token philosophy has been fully explained in terms of (strictly) symmetric (strict) monoidal categories, the analogous construction under the individual token philosophy is not completely satisfactory because it lacks universality and also functoriality. We introduce the notion of pre-net to recover these aspects, obtaining a fully satisfactory categorical treatment centered on the notion of adjunction. This allows us to present a purely logical description of net behaviours under the individual token philosophy in terms of theories and theory morphisms in partial membership equational logic, yielding a complete match with the theory developed by the authors for the collective token view of net
The Bethe approximation for solving the inverse Ising problem: a comparison with other inference methods
The inverse Ising problem consists in inferring the coupling constants of an
Ising model given the correlation matrix. The fastest methods for solving this
problem are based on mean-field approximations, but which one performs better
in the general case is still not completely clear. In the first part of this
work, I summarize the formulas for several mean- field approximations and I
derive new analytical expressions for the Bethe approximation, which allow to
solve the inverse Ising problem without running the Susceptibility Propagation
algorithm (thus avoiding the lack of convergence). In the second part, I
compare the accuracy of different mean field approximations on several models
(diluted ferromagnets and spin glasses) defined on random graphs and regular
lattices, showing which one is in general more effective. A simple improvement
over these approximations is proposed. Also a fundamental limitation is found
in using methods based on TAP and Bethe approximations in presence of an
external field.Comment: v3: strongly revised version with new methods and results, 25 pages,
21 figure
Analyses of shocked quartz at the global K-P boundary indicate an origin from a single, high-angle, oblique impact at Chicxulub
Accepted versio
- …