1,701 research outputs found

    YREE determination in seawater. Standardization and validation of a new method based on preconcentration techniques

    Get PDF
    The most interesting attraction of using rare-earth elements and yttrium (YREE) to address geochemical and marine chemical problems consists of their chemical coherence as group of trace elements. These characters allow YREE compositions of rocks and minerals to be extensively used in studies of provenance, petrogenesis and chemical evolution of the geological materials (1). Similarly, YREE compositions in the hydrosphere were used in studies of coagulation, particle-solution reactions and oceanic circulation of water masses (2-4). Unfortunately, very low concentrations of YREE (ng l-1 or sub-ng l-1) associated to high ionic strength of seawater always represented the main difficulty to analyse dissolved YREE in marine environment. The first geochemical investigations of YREE contents in seawater were carried out using neutron activation and isotope dilution mass spectrometry that were almost entirely replaced by inductively coupled plasma supplemented by mass spectrometry (ICP-MS) in recent years. This technique offers many advantages including simultaneous analysis of all the elements of series and their quantitative determination with detection limits of the order of ng l-1 if associated to preconcentration techniques (5). To perform ultra-trace YREE analyses in seawater, we developed a preconcentration method based on CHELEX-100 iminodiacetate resin followed by ICP-MS determination (Ref). In this study the YREE behaviour was quantitatively investigated during interactions with ion chelating resin and estimation of composed measurement uncertainty associated to measurements was evaluated with a rigorous metrological approach based on method validation and quality control of YREE data. These goals were achieved using synthetic seawater where YREE had concentrations as occurring in natural seawater samples. Under these conditions good recovery were obtained along the YREE series, ranging from 75%-85% and 90%-100% for heavy REE and Y and light REE, respectively. Composed measurement uncertainty was expressed in terms of precision, recovery uncertainties, reference material uncertainty and instrumental calibration uncertainty. The obtained results were critically discussed on the basis of the different contributions and confirm the quadrupole ICP-MS technique as highly sensitive to determine very low YREE concentrations. REFERENCES 1. S. R. Taylor, S.M. McLennan, The Continental Crust: its Composition and Evolution. Blackwell Scientific Publications, Oxford, 1985). 2. G.J. Piepgras, G.J. Wasserburg, Science 217 (1982) 207. 3. J. Zhang, Y. Nozaki, Geochim. Cosmochim. Acta 60 (1996) 4631. 4. R.H. Byrne, E. Sholkovitz, In: Gschneidner, J.K.A., Eyring, (Eds.), Handbook on the Physics and Chemistry of Rare Earths. Elsevier, New York, (1996) 498-593. 5. P. M\uf6ller, P. Dulski P., J. Luck, Spectrochim. Acta, 47B, 1379

    Field observables near a fluctuating boundary

    Get PDF
    We review several aspects related to the confinement of a massless scalar field in a cavity with a movable conducting wall of finite mass, free to move around its equilibrium position to which it is bound by a harmonic potential, and whose mechanical degrees of freedom are described quantum mechanically. This system, for small displacements of the movable wall from its equilibrium position, can be described by an e↵ective interaction Hamiltonian between the field and the mirror, quadratic in the field operators and linear in the mirror operators. In the interacting, i.e. dressed, ground state, we first consider local field observables such as the field energy density: we evaluate changes of the field energy density in the cavity with the movable wall with respect to the case of a fixed wall, and corrections to the usual Casimir forces between the two walls. We then investigate the case of two one-dimensional cavities separated by a movable wall of finite mass, with two massless scalar fields defined in the two cavities. We show that in this case correlations between the squared fields in the two cavities exist, mediated by the movable wall, at variance with the fixed-wall case

    PEG-coated large mesoporous silicas as smart platform for protein delivery and their use in a collagen-based formulation for 3d printing

    Get PDF
    Silica-based mesoporous systems have gained great interest in drug delivery applications due to their excellent biocompatibility and high loading capability. However, these materials face challenges in terms of pore-size limitations since they are characterized by nanopores ranging between 6–8 nm and thus unsuitable to host large molecular weight molecules such as proteins, enzymes and growth factors (GFs). In this work, for an application in the field of bone regeneration, large-pore mesoporous silicas (LPMSs) were developed to vehicle large biomolecules and release them under a pH stimulus. Considering bone remodeling, the proposed pH-triggered mechanism aims to mimic the release of GFs encased in the bone matrix due to bone resorption by osteoclasts (OCs) and the associated pH drop. To this aim, LPMSs were prepared by using 1,3,5-trimethyl benzene (TMB) as a swelling agent and the synthesis solution was hydrothermally treated and the influence of different process temperatures and durations on the resulting mesostructure was investigated. The synthesized particles exhibited a cage-like mesoporous structure with accessible pores of diameter up to 23 nm. LPMSs produced at 140◦C for 24 h showed the best compromise in terms of specific surface area, pores size and shape and hence, were selected for further experiments. Horseradish peroxidase (HRP) was used as model protein to evaluate the ability of the LPMSs to adsorb and release large biomolecules. After HRP-loading, LPMSs were coated with a pH-responsive polymer, poly(ethylene glycol) (PEG), allowing the release of the incorporated biomolecules in response to a pH decrease, in an attempt to mimic GFs release in bone under the acidic pH generated by the resorption activity of OCs. The reported results proved that PEG-coated carriers released HRP more quickly in an acidic environment, due to the protonation of PEG at low pH that catalyzes polymer hydrolysis reaction. Our findings indicate that LPMSs could be used as carriers to deliver large biomolecules and prove the effectiveness of PEG as pH-responsive coating. Finally, as proof of concept, a collagen-based suspension was obtained by incorporating PEG-coated LPMS carriers into a type I collagen matrix with the aim of designing a hybrid formulation for 3D-printing of bone scaffolds

    Comparative genomic hybridization on microarray (a-CGH) in constitutional and acquired mosaicism may detect as low as 8% abnormal cells

    Get PDF
    Abstract. Background: The results of cytogenetic investigations on unbalanced chromosome anomalies, both constitutional and acquired, were largely improved by comparative genomic hybridization on microarray (a-CGH), but in mosaicism the ability of a-CGH to reliably detect imbalances is not yet well established. This problem of sensitivity is even more relevant in acquired mosaicism in neoplastic diseases, where cells carrying acquired imbalances coexist with normal cells, in particular when the proportion of abnormal cells may be low. We constructed a synthetic mosaicism by mixing the DNA of three patients carrying altogether seven chromosome imbalances with normal sex-matched DNA. Dilutions were prepared mimicking 5%, 6%, 7%, 8%, 10% and 15% levels of mosaicism. Oligomer-based a-CGH (244 K whole-genome system) was applied on the patients' DNA and customized slides designed around the regions of imbalance were used for the synthetic mosaics. Results and conclusions. The a-CGH on the synthetic mosaics proved to be able to detect as low as 8% abnormal cells in the tissue examined. Although in our experiment some regions of imbalances escaped to be revealed at this level, and were detected only at 10-15% level, it should be remarked that these ones were the smallest analyzed, and that the imbalances recurrent as clonal anomalies in cancer and leukaemia are similar in size to those revealed at 8% level

    Dual inhibitory action of trazodone on dorsal raphe serotonergic neurons through 5-HT1A receptor partial agonism and α1-adrenoceptor antagonism

    Get PDF
    Trazodone is an antidepressant drug with considerable affinity for 5-HT1A receptors and α1-adrenoceptors for which the drug is competitive agonist and antagonist, respectively. In this study, we used cell-attached or whole-cell patch-clamp recordings to characterize the effects of trazodone at somatodendritic 5-HT1A receptors (5-HT1AARs) and α1-adrenoceptors of serotonergic neurons in rodent dorsal raphe slices. To reveal the effects of trazodone at α1-adrenoceptors, the baseline firing of 5-HT neurons was facilitated by applying the selective α1-adrenoceptor agonist phenylephrine at various concentrations. In the absence of phenylephrine, trazodone (1-10 μM) concentration-dependently silenced neurons through activation of 5-HT1AARs. The effect was fully antagonized by the selective 5-HT1A receptor antagonist Way-100635. With 5-HT1A receptors blocked by Way-100635, trazodone (1-10 μM) concentration-dependently inhibited neuron firing facilitated by 1 μM phenylephrine. Parallel rightward shift of dose-response curves for trazodone recorded in higher phenylephrine concentrations (10-100 μM) indicated competitive antagonism at α1-adrenoceptors. Both effects of trazodone were also observed in slices from Tph2-/- mice that lack synthesis of brain serotonin, showing that the activation of 5-HT1AARs was not mediated by endogenous serotonin. In whole-cell recordings, trazodone activated 5-HT1AAR-coupled G protein-activated inwardly-rectifying (GIRK) channel conductance with weak partial agonist efficacy (~35%) compared to that of the full agonist 5-CT. Collectively our data show that trazodone, at concentrations relevant to its clinical effects, exerts weak partial agonism at 5-HT1AARs and disfacilitation of firing through α1-adrenoceptor antagonism. These two actions converge in inhibiting dorsal raphe serotonergic neuron activity, albeit with varying contribution depending on the intensity of α1-adrenoceptor stimulation

    Different loss of material in recurrent chromosome 20 interstitial deletions in Shwachman-Diamond syndrome and in myeloid neoplasms

    Get PDF
    Abstract BACKGROUND: An interstitial deletion of the long arms of chromosome 20, del(20)(q), is frequent in the bone marrow (BM) of patients with myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and myeloproliferative neoplasms (MPN), and it is recurrent in the BM of patients with Shwachman-Diamond syndrome (SDS), who have a 30-40% risk of developing MDS and AML. RESULTS: We report the results obtained by microarray-based comparative genomic hybridization (a-CGH) in six patients with SDS, and we compare the loss of chromosome 20 material with one patient with MDS, and with data on 92 informative patients with MDS/AML/MPN and del(20)(q) collected from the literature. CONCLUSIONS: The chromosome material lost in MDS/AML/MPN is highly variable with no identifiable common deleted regions, whereas in SDS the loss is more uniform: in 3/6 patients it was almost identical, and the breakpoints that we defined are probably common to most patients from the literature. In some SDS patients less material may be lost, due to different distal breakpoints, but the proximal breakpoint is in the same region, always leading to the loss of the EIF6 gene, an event which was related to a lower risk of MDS/AML in comparison with other patients

    Deletion of chromosome 20 in bone marrow of patients with Shwachman-Diamond syndrome, loss of the EIF6 gene and benign prognosis

    Get PDF
    Shwachman-Diamond Syndrome (SDS; On-line Mendelian Inheritance in Man database number 260400) is an autosomal recessive disorder caused by mutations in the SBDS gene in at least 90% of cases (Boocock et al, 2003). It is characterized by exocrine pancreatic insufficiency, skeletal anomalies, and bone marrow failure with variable severity of neutropenia, thrombocytopenia and anaemia (Rothbaum et al, 2002). Acquired clonal chromosome anomalies are commonly found in the bone marrow (BM), being an isochromosome for the long arms of a 7, i(7)(q10), and a deletion of the long arms of a 20, del(20)(q11), the most frequent. The relationship between these chromosome changes and the risk of patients with SDS to develop myelodysplastic syndromes and acute myeloid leukaemia (MDS/AML) has been discussed (Dror, 2005). This risk increases with the age (Shimamura, 2006), and we have also shown that the acquisition of BM clonal anomalies is age-related (Maserati et al, 2009)

    Recurrence of the oxazole motif in tubulin colchicine site inhibitors with anti-tumor activity

    Get PDF
    Because of its wide spectrum of targets and biological activities, the oxazole ring is a valuable heterocyclic scaffold in the design of new therapeutic agents with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic and antidepressant properties. The presence of two heteroatoms, oxygen and nitrogen, offers possible interactions (hydrogen, hydrophobic, van der Waals or dipoles bonds) with a broad range of receptors and enzymes. Furthermore, the oxazole core conjugates low cytotoxicity with improved compound solubility and is well suited to structural modifications such as substitution with different groups and condensation to aromatic, heteroaromatic or non-aromatic rings, offering diversity when introduced into scaffolds. These features make it a very attractive nucleus in medicinal chemistry. Herein we present a diverse array of oxazole derivatives with potential therapeutic use in multiple tumor models. The emphasis has been addressed to compounds with anti-tubulin activity reported in literature in the last decade, describing their structural features, efficiency and future perspectives

    Mechanistic insights on the mode of action of an antiproliferative thiosemicarbazone-nickel complex revealed by an integrated chemogenomic profiling study

    Get PDF
    Thiosemicarbazones (TSC) and their metal complexes display diverse biological activities and are active against multiple pathological conditions ranging from microbial infections to abnormal cell proliferation. Ribonucleotide reductase (RNR) is considered one of the main targets of TSCs, yet, the existence of additional targets, differently responsible for the multifaceted activities of TSCs and their metal complexes has been proposed. To set the basis for a more comprehensive delineation of their mode of action, we chemogenomically profiled the cellular effects of bis(citronellalthiosemicarbazonato)nickel(II) [Ni(S-tcitr)2] using the unicellular eukaryote Saccharomyces cerevisiae as a model organism. Two complementary genomic phenotyping screens led to the identification of 269 sensitive and 56 tolerant deletion mutant strains and of 14 genes that when overexpressed make yeast cells resistant to an otherwise lethal concentration of Ni(S-tcitr)2. Chromatin remodeling, cytoskeleton organization, mitochondrial function and iron metabolism were identified as lead cellular processes responsible for Ni(S-tcitr)2 toxicity. The latter process, and particularly glutaredoxin-mediated iron loading of RNR, was found to be affected by Ni(S-tcitr)2. Given the multiple pathways regulated by glutaredoxins, targeting of these proteins by Ni(S-tcitr)2 can negatively affect various core cellular processes that may critically contribute to Ni(S-tcitr)2 cytotoxicity
    corecore