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Abstract. We review several aspects related to the confinement of a massless scalar field in

a cavity with a movable conducting wall of finite mass, free to move around its equilibrium

position to which it is bound by a harmonic potential, and whose mechanical degrees of freedom

are described quantum mechanically. This system, for small displacements of the movable wall

from its equilibrium position, can be described by an e↵ective interaction Hamiltonian between

the field and the mirror, quadratic in the field operators and linear in the mirror operators.

In the interacting, i.e. dressed, ground state, we first consider local field observables such as

the field energy density: we evaluate changes of the field energy density in the cavity with the

movable wall with respect to the case of a fixed wall, and corrections to the usual Casimir forces

between the two walls. We then investigate the case of two one-dimensional cavities separated

by a movable wall of finite mass, with two massless scalar fields defined in the two cavities. We

show that in this case correlations between the squared fields in the two cavities exist, mediated

by the movable wall, at variance with the fixed-wall case.

1. Introduction

The presence of a cavity or reflecting boundaries has deep consequences on quantum fields,

because they impose boundary conditions to the field operators. Well-known physical

consequences are, for example, modifications of the spontaneous emission rate of atoms [1, 2, 3],

the Casimir e↵ect [4, 5] and the Casimir-Polder interactions [6, 7]. Additional e↵ects are present

in the case of moving boundaries, for example when one boundary of a cavity is put in a

nonadiabatic oscillatory motion, or its magnetodielectric properties change with time: a well-

known example is the dynamical Casimir e↵ect, consisting in the emission of pairs of real photons

from the vacuum [8, 9, 10, 11].

In this paper we review some recent results on observable quantities of a quantum field near

a reflecting boundary with a finite mass that is free to move and whose mechanical degrees

of freedom are treated quantum mechanically. Specifically, our system consists of a massless

one-dimensional scalar field in a cavity with a movable boundary. The movable boundary is

assumed perfectly reflecting and bound to its equilibrium position by a harmonic potential; its

mechanical degrees of freedom are treated quantum mechanically, and thus it is subjected to

position fluctuations. This introduces an e↵ective field-mirror interaction, as well as an e↵ective

interaction between the field modes mediated by the movable mirror [12, 13]. Also, the e↵ective
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field-mirror interaction yields virtual excitations of the field in the interacting ground state, i.e.

a sort of dressing of the movable wall. Changes of local field quantities such as its energy density,

and spatial correlations between field observables, are also expected due to the presence of the

trembling cavity wall. We show that, indeed, local field quantities in the dressed vacuum state,

such as the expectation value of the squared field or the field energy density, are modified due

to the motion of the wall, as well as the existence of spatial correlations of the squared field

between points at the opposite sides of the movable wall.

This paper is organized as follows. In Sec. 2 we introduce our physical system of a cavity with

a movable wall, its Hamiltonian and obtain the interacting ground state at the first order; we

then generalize the model to the case of two cavities separated by a movable wall, and evaluate

the interacting ground state at the second order. In Sec. 3 we first evaluate the field energy

density inside the cavity; then, in the two-cavity case, we evaluate the spatial correlation between

field observables in the two cavities, in particular the correlation of the squared fields, showing

that an anticorrelation exists. Possible observability of these phenomena is also discussed. Sec.

4 is finally devoted to our final conclusions.

2. The Hamiltonian model and the interacting ground state

We consider a massless scalar field in a one-dimensional cavity of length L, with a fixed wall

at x = 0 and a movable wall at the average position x = L. We also assume that the movable

mirror has a finite mass m and that it is bound to its average position by a harmonic potential

of angular frequency !0. Both mirrors are assumed to be perfectly reflecting. The mechanical

degrees of freedom of the movable mirror are described quantum mechanically, in terms of a

quantum harmonic oscillator.

In the case of small displacements of the movable mirror from its equilibrium position, our

system can be described by an e↵ective Hamiltonian originally introduced by Law [12]. This

e↵ective Hamiltonian H contains an unperturbed term given by the sum of the field and mirror

Hamiltonians and an interaction term that is quadratic in the field operators and linear in

the mirror operators. The field annihilation and creation operators refer to the movable wall’s

equilibrium position. The Law Hamiltonian is [12]

H =

X

k

~!ka
†
kak + ~!0b

†
b� (b+ b

†
)

X

kj

CkjN

h
(ak + a

†
k)(aj + a

†
j)

i
, (1)

where b and b
†
are bosonic annihilation and creation operators of the movable wall, ak and

a
†
k are the bosonic operators of the massless 1D scalar field relative to the wall’s equilibrium

position, !k = ck, N is the normal ordering operator, and Ckj = (�1)
k+j

L
�1

p
~3!k!j/(8m!0)

is the field-mirror coupling constant. This kind of Hamiltonian has been often used to treat

the mirror-field dynamics [14, 15, 16]. In the following, we will treat the field-mirror interaction

term perturbatively, up to the first or second order according to the field quantities we shall

consider.

The unperturbed ground state (both mirror and field in their bare vacuum state) is |0; {0k}i,

where the first element is relative to the movable wall, and the second to the field. The presence

of the e↵ective mirror-field interaction yields an energy shift of the ground state given, at the

second order in the coupling, by [17]

�Eg = �
~2

4L2m!0

X

kj

!k!j

!0 + !k + !j
. (2)

We now consider the system’s interacting ground state. At first order in the coupling constant
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Ckj , the corrected ground state is given by (apart a normalization factor)

|gi = |0; {0k}i+
1

L

✓
~

8m!0

◆1/2X

kj

(�1)
k+j

p
!k!j

!0 + !k + !j
|1; {1k1j}i, (3)

that contains virtual admixtures with states with one excitation in the wall’s degrees of freedom

and two excitations in the field. From the state (3), it is possible to evaluate the virtual photon

spectrum, showing that it has a maximum when the sum of the frequencies of the two photons

is equal to the oscillation frequency !0 of the boundary; this is analogous to the case of the

dynamical Casimir e↵ect (forced harmonic oscillation of the boundary), except that in the latter

case the condition !k + !j = !0 is sharp, while in our present case it is only a maximum of a

quite broad frequency distribution.

In the next section, we will also consider the case of two 1D cavities of length L separated

by a perfectly reflecting movable wall, and two massless quantum scalar fields defined inside

each cavity. If the perfect boundary separating the two cavities were fixed in space, the fields in

the two cavities cannot influence each other, of course; this means that the spatial correlation

between field observables pertinent to the di↵erent cavities are vanishing. The situation changes

drastically if the separating wall can move, as we shall discuss in detail in the next section.

We now introduce the Hamiltonian model for this two-cavity system that is a straightforward

generalization of the previous one-cavity model. The average position of the movable wall, that

separates the two cavities, is at x = L, while the two fixed walls are at x = 0 (cavity 1, at the

left side of the movable wall) and at x = 2L (cavity 2, at the right side of the movable wall). The

Hamiltonian of our system, as mentioned, is a straightforward generalization of the Hamiltonian

(1) to the present two-cavity case; it is given by

H = ~
X

k

!ka
†
kak + ~

X

k

!kc
†
kck + ~!0b

†
b�

⇣
b+ b

†
⌘X

kj

C
1
kjN

h⇣
aj + a

†
j

⌘⇣
ak + a

†
k

⌘i

�

⇣
b+ b

†
⌘X

kj

C
2
kjN

h⇣
cj + c

†
j

⌘⇣
ck + c

†
k

⌘i
, (4)

where ak and a
†
k are bosonic operators relative to the field in the left-side cavity (cavity 1), while

ck and c
†
k are the bosonic operators relative to the right-side cavity (cavity 2). They both refer to

modes relative to the equilibrium position x = L of the mobile wall. There are also two mirror-

field interaction terms, with C
1
kj and C

2
kj , respectively, the coupling constants of the mirror with

the field defined in cavity 1 and in cavity 2. Also, C
1
kj is equal to the coupling constant Ckj

defined after Eq. (1) for the single-cavity case, and C
2
kj = �C

1
kj , because a movement of the

movable wall in one direction increases the length of one cavity and decreases the length of the

other one [15, 18].

The noninteracting (bare) ground state is |0; {0k}; {0k}i, where the first element refers to

the mirror’s excitations, while the second and the third ones refer respectively to the quanta in

cavity 1 and in cavity 2: in this state there are no excitations in the mirror and in any of the

fields. The interaction terms in (4) give a correction yielding the interacting (dressed) state. Up

to the second order in the coupling constants (we need the second-order corrected state because

the correlation function we are going to calculate in Sec. 3 is nonvanishing starting from the

second order in the couplings), the true ground state has the following form

|g̃i =

✓
1�

1

2
⇤
2

◆
|0; {0k}; {0k}i+ |g

(1)
i+ |g

(2)
i, (5)

where ⇤ is a normalization factor, |g
(1)

i is the first-order correction and |g
(2)

i is the second-

order correction. Using time-independent perturbation theory up to the second order, we obtain
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combinations of states of the form described in the following. The first order correction |g
(1)

i

contains states of the form |1; {1j1k}; {0k}i (one mirror excitation, two quanta in cavity 1

and zero in cavity 2) or |1; {0k}; {1j1k}i (one mirror excitation, zero quanta in cavity 1 and

two quanta in cavity 2). The second-order correction |g
(2)

i contains terms with zero mirror

excitations and one of the following possibilities for the two fields: two quanta in one cavity and

zero quanta in the other one, or two quanta in each cavity, or four quanta in one cavity and zero

quanta in the other cavity (there are also states with two mirror excitations, but they do not

contribute to the correlation functions we are going to calculate in Sec. 3) [18].

3. Field observables near the movable wall for the one- and two-cavity system

We first consider the one-cavity case. A relevant aspect is considering local field quantities inside

the cavity such as the field energy density H(x) =
1
2


1
c2�

2
(x) +

⇣
d�(x)
dx

⌘2
�
. The expression of

the 1D scalar field operator, with the appropriate boundary conditions at x = 0 and x = L, is

�(x) =

r
~c2
L

X

j

sin(kjx)
p
!j

⇣
aj + a

†
j

⌘
, (6)

where kj = nj⇡/L, with nj = 1, 2, ..., and !j = ckj . We now evaluate the expression

for the change of the renormalized field energy density inside the cavity, evaluated on the

interacting ground state (3), with respect to that for a cavity with fixed walls �H(x) =

hg|H(x)|gi � h0|H(x)|0i. The result is

�H(x) =
~2

2L3m!0

X

jk`

(�1)
k+` !j!k!`

(!0 + !j + !k)(!0 + !j + !`)
cos


(!k � !`)x

c

�
fkj`(!M ), (7)

where x is the distance from the movable wall and fkj`(!M ) is a regularization function necessary

to cure ultraviolet divergences and to simulate the e↵ect of a real metal, !M being an upper

cuto↵ frequency. In Ref. [17] �H(x) was evaluated numerically using a sharp cuto↵ function;

this, for a finite cavity size L, is equivalent to considering a finite number of field modes. The

results from the numerical evaluation show that, by including the motion of the finite-mass wall,

the field energy density inside the cavity changes, and that this change is particularly relevant

in the proximity of the movable wall (the e↵ect increases with increasing cuto↵ frequency),

while it is negligible at large distances form the movable wall. This result is consistent with

the following physical picture. Due to the field-mirror interaction, pairs of virtual quanta are

emitted and reabsorbed by the wall (see Eq. (3)). These quanta, however, remain confined near

the wall, according to the energy-time uncertainty relation: the higher their frequency is, the

more are they confined near the mobile wall. It is also worth to stress that the field energy

density we are considering can be probed through the atom-wall dispersion interaction energy

with a polarizable body such as a ground-state atom [19]: thus, the change in the field energy

density inside the cavity due to the position fluctuations of the movable wall can be in principle

measured. Eq. (7) also shows that the e↵ect found becomes larger as the mass and oscillation

frequency of the movable wall are decreased.

We also wish to mention that expressions like Eq. (7) could be also evaluated with an

exponential cuto↵ function (more realistic than a sharp one), in particular in continuum limit,

L ! 1,
P

k ! L/(2⇡)
R
dk, thus recovering the case of a single movable wall, as we will

explicitly do in the next part of this section for the spatial correlations in the two-cavity case.

These results can be extended to the case of a 1D electromagnetic field or to a 3D scalar

field [20]. For example, in the case of the 1D electromagnetic case, the correction to the electric
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and magnetic field fluctuations (or, equivalently, to the electric and magnetic energy densities)

in the cavity due to the wall’s position fluctuations at the first order are found to be [20]

hE
2
z (x)i =

~2
m!0L

3

X

j`n

(�1)
`+n !j!`!nfj`n(!M )

(!0 + !j + !`)(!0 + !j + !n)
sin(k`x) sin(knx), (8)

hB
2
y(x)i =

~2
m!0L

3

X

j`n

(�1)
`+n !j!`!nfj`n(!M )

(!0 + !j + !`)(!0 + !j + !n)
cos(k`x) cos(knx), (9)

where the subscripts in the electric and magnetic field operators refer to their cartesian

components and fj`n(!M ) is an appropriate cuto↵ function for !j ,!`,!n. The main qualitative

features of the results obtained for the field energy densities of the 1D electric and magnetic

fields, as well as of the 3D scalar field, are similar to the case considered before for the 1D scalar

field. We refer the reader to Ref. [20] for more details. For example, explicit evaluation of (8,9)

shows significant changes of the electric and magnetic energy density in the cavity, this change

rapidly increasing when approaching the movable wall.

We now consider the case of two cavities separated by a perfectly reflecting movable mirror,

introduced at the end of Sec. 2. Specifically, we calculate the spatial correlation functions

between field observables defined in the two cavities on the interacting ground state (5). The

field operator in cavity 1 (x1 2 (0, L)) is

�(x1) =

r
~c2
L

X

j

sin(kjx1)
p
!j

⇣
aj + a

†
j

⌘
, (10)

and the field operator in cavity 2 (x2 2 (L, 2L)) is

�(x2) = �

r
~c2
L

X

j

sin(kjx2)
p
!j

⇣
cj + c

†
j

⌘
, (11)

with kj = nj⇡/L, nj = 1, 2, ... due to the boundary conditions of the two field operators and

!j = ckj . It is immediate to see that the spatial correlation function on the dressed ground state

(5) between these two fields (i.e. between a point in cavity 1 and a point in cavity 2) vanishes,

hg̃|�(x1)�(x2)|g̃i � hg̃|�(x1)|g̃ihg̃|�(x2)|g̃i = 0 (this is indeed true at any order in perturbation

theory, within the Hamiltonian model (4) used).

The spatial correlation of the squared fields between the two cavities, with x1 2 (0, L) and

x2 2 (L, 2L), evaluated on the state (5), after some lengthy algebraic calculation is obtained as

[18]

C(x1, x2) = hg̃|�
2
(x1)�

2
(x2)|g̃i � hg̃|�

2
(x1)|g̃ihg̃|�

2
(x2)|g̃i

= �
~3c4

L4m!0

X

pqrs

(�1)
p+q+r+s

n
sin(kpx1) sin(kqx1) sin(krx2) sin(ksx2)

(!0 + !p + !q)(!0 + !r + !s)

+

h
sin(kpx1) sin(kqx1) sin(krx2) sin(ksx2)

(!0 + !p + !q)(!p + !q + !r + !s)
+ (x1 $ x2)

io
fpqrs(!M ), (12)

where

fpqrs(!M ) = exp [�(!p + !q + !r + !s)/!M ] (13)

is a regularization function and !M is the cuto↵ frequency; in the case of boundaries made of a

real metal, the cuto↵ frequency !M can be also identified with the metal plasma frequency.
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In the continuum limit, L ! 1,
P

j ! (L/2⇡)
R1
0 dkj , and defining in both cavities the

distance from the movable wall as x̃1 = L� x1 and x̃2 = x2 � L, we recover the case of a single

movable boundary, to which we are mainly interested. In the continuum limit and for generic

values of the distances x̃1 = L�x1 and x̃2 = x2�L, the spatial correlation function (12) contains

four frequency integrals, three of them can be obtained analytically, and we must resort to a

numerical integration for the last one. For large distances from the wall, i.e. for x̃1,2 � c/!0,

and using !M � !0 (condition certainly met in any realistic setup), we can however obtain an

approximated analytical expression for the spatial correlation function

C(x̃1, x̃2) ' �
~3c4
29⇡4

1

m!
3
0

1

x̃
2
1x̃

2
2

. (14)

Equation (14) proves the existence of a nonvanishing correlation between the squared fields

in the two cavities, even if the cavities are separated by a perfectly reflecting mirror. C(x̃1, x̃2) is

negative, and thus the squared fields at the opposite sides of the movable wall are anticorrelated,

even if there is not any direct interaction between them. The physical origin of this result is

indeed in the mutual interaction of both fields with the movable mirror. For points at the

same distance x̃ = x̃1 = x̃2 from the wall, the anticorrelation scales with the distance as x̃
�4

,

and, respectively, as m
�1

and !
�3
0 from the mirror’s mass and oscillation frequency. Even if

Eq. (14) holds only at large distances from the mirror, the numerical evaluation of (12) shows

that a nonvanishing correlation exists also at shorter distances from the movable mirror [18].

Since, according to (12), the (anti)correlation between the squared field scales as 1/m and 1/!
3
0,

the e↵ects we have described are larger the smaller the mass and oscillation frequency of the

movable wall are. In optomechanical experiments, a typical oscillation frequency is of the order

of 10
4
� 10

6
s
�1

and masses as low as 10
�15

kg to 10
�21

kg can be experimentally achieved

[21, 22]. These very low values of the mass could make experimentally detectable the e↵ects

we have found for the field energy density and squared field spatial correlations, for example

exploiting the connection between field energy densities and two- and many-body dispersion

interactions [18, 19]. Finally, we wish to mention that the results here presented have some

similarity with the emission of radiation by a fuzzy black-hole event horizon [23, 24], and we

guess it could be worth to pursue more deeply this analogy.

4. Conclusion

In this paper, we have reviewed some relevant aspects related to quantum fields confined in one

or two perfectly reflecting one-dimensional cavities with a wall of finite mass and free to move,

bound to its equilibrium position by a harmonic potential. The mechanical degrees of freedom of

the movable wall are treated quantum mechanical, and this yield a mirror-field interaction and

an e↵ective interaction between the field modes, mediated by the movable boundary. Using the

Law Hamiltonian, in the case of a single cavity with a movable boundary, we have investigated

the e↵ect of the motion and position fluctuations of the wall on some local field observables

(energy densities and squared field) in the interacting ground state, which contains virtual

field excitations; we find significant changes of the field energy density inside the cavity. In

the case of two ideal cavities separated by a movable wall, we have investigated the spatial

correlations between the squared field in the two cavities, showing that an anticorrelation exists,

notwithstanding they are separated by a perfectly reflecting mirror. We have discussed the

dependence of such spatial anticorrelation from the relevant parameters, in particular from

the distance from the movable wall and the wall’s mass and oscillation frequency. Possible

observability of these e↵ects has been also discussed.
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