311 research outputs found

    Embeddings into outer models

    Full text link
    We explore the possibilities for elementary embeddings j:MNj : M \to N, where MM and NN are models of ZFC with the same ordinals, MNM \subseteq N, and NN has access to large pieces of jj. We construct commuting systems of such maps between countable transitive models that are isomorphic to various canonical linear and partial orders, including the real line R\mathbb R

    The Role of Learning in Olfactory Sensitivity

    Get PDF
    INTRODUCTION: In recent years the psychological literature has reflected an increasing interest in the role of learning in perception. On the theoretical level, this interest is expressed principally by the considerable attention given to two current attempts to account for perceptual learning (Gibson & Gibson, 1955a: Postman, 1955). On the empirical level, the problems of industry and the military have generated a multitude of investigations in this area. These problems range in diversity from the training of military personnel in the identification of aircraft to the training of tasters in the food industry. The remainder of this chapter will be devoted to a critical analysis of the theoretical formulation of perceptual learning and to a review of the empirical findings relevant to the present experiment

    Pair Events in Superluminal Optics

    Full text link
    When an object moves faster than emissions it creates, it may appear at two positions simultaneously. The appearance or disappearance of this bifurcation is referred to as a pair event. Inherently convolved with superluminal motion, pair events have no subluminal counterparts. Common examples of superluminal motions that exhibit pair events include Cherenkov radiation, sonic booms, illumination fronts from variable light sources, and rotating beams. The minimally simple case of pair events from a single massive object is explored here: uniform linear motion. A pair event is perceived when the radial component of the object's speed toward the observer drops from superluminal to subluminal. Emission from the pair creation event will reach the observer before emission from either of the two images created. Potentially observable image pair events are described for sonic booms and Cherenkov light. To date, no detection of discrete images following a projectile pair event have ever been reported, and so the pair event nature of sonic booms and Cherenkov radiation, for example, remains unconfirmed. Recent advances in modern technology have made such pair event tracking feasible. If measured, pair events could provide important information about object distance and history.Comment: 13 pages, 3 figures. in press: Annalen der Physi

    Are Causality Violations Undesirable?

    Full text link
    Causality violations are typically seen as unrealistic and undesirable features of a physical model. The following points out three reasons why causality violations, which Bonnor and Steadman identified even in solutions to the Einstein equation referring to ordinary laboratory situations, are not necessarily undesirable. First, a space-time in which every causal curve can be extended into a closed causal curve is singularity free--a necessary property of a globally applicable physical theory. Second, a causality-violating space-time exhibits a nontrivial topology--no closed timelike curve (CTC) can be homotopic among CTCs to a point, or that point would not be causally well behaved--and nontrivial topology has been explored as a model of particles. Finally, if every causal curve in a given space-time passes through an event horizon, a property which can be called "causal censorship", then that space-time with event horizons excised would still be causally well behaved.Comment: Accepted in October 2008 by Foundations of Physics. Latex2e, 6 pages, no figures. Presented at a seminar at the Universidad Nacional Autonoma de Mexico. Version 2 was co-winner of the QMUL CTC Essay Priz

    Nonlocality of a free atomic wave packet

    Full text link
    A simple model allows us to study the nonclassical behavior of slowly moving atoms interacting with a quantized field. Atom and field become entangled and their joint state can be identified as a mesoscopic "Schroedinger-cat". By introducing appropriate observables for atom and field and by analyzing correlations between them based on a Bell-type inequality we can show the corresponding nonclassical behavior.Comment: 15 pages, 3 figures. To appear in Physics Letters

    Quantum effects after decoherence in a quenched phase transition

    Full text link
    We study a quantum mechanical toy model that mimics some features of a quenched phase transition. Both by virtue of a time-dependent Hamiltonian or by changing the temperature of the bath we are able to show that even after classicalization has been reached, the system may display quantum behaviour again. We explain this behaviour in terms of simple non-linear analysis and estimate relevant time scales that match the results of numerical simulations of the master-equation. This opens new possibilities both in the study of quantum effects in non-equilibrium phase transitions and in general time-dependent problems where quantum effects may be relevant even after decoherence has been completed.Comment: 7 pages, 7 figures, revtex, important revisions made. To be published in Phys. Rev.

    Topologically protected quantum bits from Josephson junction arrays

    Full text link
    All physical implementations of quantum bits (qubits), carrying the information and computation in a putative quantum computer, have to meet the conflicting requirements of environmental decoupling while remaining manipulable through designed external signals. Proposals based on quantum optics naturally emphasize the aspect of optimal isolation, while those following the solid state route exploit the variability and scalability of modern nanoscale fabrication techniques. Recently, various designs using superconducting structures have been successfully tested for quantum coherent operation, however, the ultimate goal of reaching coherent evolution over thousands of elementary operations remains a formidable task. Protecting qubits from decoherence by exploiting topological stability, a qualitatively new proposal due to Kitaev, holds the promise for long decoherence times, but its practical physical implementation has remained unclear so far. Here, we show how strongly correlated systems developing an isolated two-fold degenerate quantum dimer liquid groundstate can be used in the construction of topologically stable qubits and discuss their implementation using Josephson junction arrays.Comment: 6 pages, 4 figure

    Schrodinger cat states prepared by Bloch oscillation in a spin-dependent optical lattice

    Full text link
    We propose to use Bloch oscillation of ultra-cold atoms in a spin-dependent optical lattice to prepare schrodinger cat states. Depending on its internal state, an atom feels different periodic potentials and thus has different energy band structures for its center-of-mass motion. Consequently, under the same gravity force, the wave packets associated with different internal states perform Bloch oscillation of different amplitudes in space and in particular they can be macroscopically displaced with respect to each other. In this way, a cat state can be prepared.Comment: 4 pages, 3 figures; slightly modifie

    Generation of entangled states of two atoms inside a leaky cavity

    Full text link
    An in-depth theoretical study is carried out to examine the quasi-deterministic entanglement of two atoms inside a leaky cavity. Two Λ\Lambda-type three-level atoms, initially in their ground states, may become maximally entangled through the interaction with a single photon. By working out an exact analytic solution, we show that the probability of success depends crucially on the spectral function of the injected photon. With a cavity photon, one can generate a maximally entangled state with a certain probability that is always less than 50%. However, for an injected photon with a narrower spectral width, this probability can be significantly increased. In particular, we discover situations in which entanglement can be achieved in a single trial with an almost unit probability
    corecore