190 research outputs found

    Entanglement and the SU(2) phase states in atomic systems

    Get PDF
    We show that a system of 2n identical two-level atoms interacting with n cavity photons manifests entanglement and that the set of entangled states coincides with the so-called SU(2) phase states. In particular, violation of classical realism in terms of the GHZ and GHSH conditions is proved. We discuss a new property of entanglement expressed in terms of local measurements. We also show that generation of entangled states in the atom-photon systems under consideration strongly depends on the choice of initial conditions and that the parasitic influence of cavity detuning can be compensated through the use of Kerr medium.Comment: 10 pages, 1 figur

    Biomolecular Detection employing the Interferometric Reflectance Imaging Sensor (IRIS)

    Get PDF
    The sensitive measurement of biomolecular interactions has use in many fields and industries such as basic biology and microbiology, environmental/agricultural/biodefense monitoring, nanobiotechnology, and more. For diagnostic applications, monitoring (detecting) the presence, absence, or abnormal expression of targeted proteomic or genomic biomarkers found in patient samples can be used to determine treatment approaches or therapy efficacy. In the research arena, information on molecular affinities and specificities are useful for fully characterizing the systems under investigation

    Quantum state engineering with Josephson-junction devices

    Full text link
    We review recent theoretical and experimental progress in quantum state engineering with Josephson junction devices. The concepts of quantum computing have stimulated an increased activity in the field. Either charges or phases (fluxes) of the Josephson systems can be used as quantum degrees of freedom, and their quantum state can be manipulated coherently by voltage and current pulses. They thus can serve as qubits, and quantum logic gates can be performed. Their phase coherence time, which is limited, e.g., by the electromagnetic fluctuations in the control circuit, is long enough to allow a series of these manipulations. The quantum measurement process performed by a single-electron transistor, a SQUID, or further nanoelectronic devices is analyzed in detail.Comment: An article prepared for Reviews of Modern Physics, 46 pages, 23 figure

    Public political narratives: developing a neglected source through the exploratory case of Russia in the Putin-Medvedev era

    Get PDF
    The place of narrative in political science is an issue that resurfaces with regularity, usually focusing on the questions of generalisability, evidence and causality which lie at the heart of the discipline. Most such debate concerns the use of narrative by political scientists. Far less attention has been devoted to the use of narrative by political actors, despite its relative ubiquity. Even where such attention has been given, it concentrates less on the narrative per se, and more on its performance and impact. However, the nature of public political narratives means that analysis of them facilitates a holistic understanding of their narrators' politics. A public political narrative consists of a sequential account given by political actors connecting selected, specific developments so as to impose a desired order on them. Taking contemporary Russia as an exploratory case, narrative analysis draws out the motivations, world view and inconsistencies within the Putin-Medvedev regime. Recurring motifs and symbols identify the regime's political priorities, explaining policy choices and revealing future concerns. Narrative has a predictive aspect, identifying likely policy responses to unexpected events. Narratives capture time, and shifts in their temporalities indicate changes in self-conceptualisation and political priorities. Temporal appropriations include or exclude particular agential and causal explanations. The relationship between their plots and subplots represents a political signalling process. Public political narratives provide temporally and spatially specific exceptionalist accounts, but their combinatory quality also facilitates comparative analysis. The approach essayed here provides methodological generalisability, arguing that the neglect of public political narratives merits correcting

    Evaluating the Effects of Cerebrospinal Fluid Protein Content on the Performance of Differential Pressure Valves and Antisiphon Devices Using a Novel Benchtop Shunting Model

    Get PDF
    BACKGROUNDHydrocephalus is managed by surgically implanting flow-diversion technologies such as differential pressure valves and antisiphoning devices; however, such hardware is prone to failure. Extensive research has tested them in flow-controlled settings using saline or de-aerated water, yet little has been done to validate their performance in a setting recreating physiologically relevant parameters, including intracranial pressures, cerebrospinal fluid (CSF) protein content, and body position.OBJECTIVETo more accurately chart the episodic drainage characteristics of flow-diversion technology. A gravity-driven benchtop model of flow was designed and tested continuously during weeks-long trials.METHODSUsing a hydrostatic pressure gradient as the sole driving force, interval flow rates of 6 valves were examined in parallel with various fluids. Daily trials in the upright and supine positions were run with fluid output collected from distal catheters placed at alternating heights for extended intervals.RESULTSSignificant variability in flow rates was observed, both within specific individual valves across different trials and among multiple valves of the same type. These intervalve and intravalve variabilities were greatest during supine trials and with increased protein. None of the valves showed evidence of overt obstruction during 30 d of exposure to CSF containing 5 g/L protein.CONCLUSIONDay-to-day variability of ball-in-cone differential pressure shunt valves may increase overdrainage risk. Narrow-lumen high-resistance flow control devices as tested here under similar conditions appear to achieve more consistent flow rates, suggesting their use may be advantageous, and did not demonstrate any blockage or trend of decreasing flow over the 3 wk of chronic use

    Remarks on the Cauchy functional equation and variations of it

    Full text link
    This paper examines various aspects related to the Cauchy functional equation f(x+y)=f(x)+f(y)f(x+y)=f(x)+f(y), a fundamental equation in the theory of functional equations. In particular, it considers its solvability and its stability relative to subsets of multi-dimensional Euclidean spaces and tori. Several new types of regularity conditions are introduced, such as a one in which a complex exponent of the unknown function is locally measurable. An initial value approach to analyzing this equation is considered too and it yields a few by-products, such as the existence of a non-constant real function having an uncountable set of periods which are linearly independent over the rationals. The analysis is extended to related equations such as the Jensen equation, the multiplicative Cauchy equation, and the Pexider equation. The paper also includes a rather comprehensive survey of the history of the Cauchy equation.Comment: To appear in Aequationes Mathematicae (important remark: the acknowledgments section in the official paper exists, but it appears before the appendix and not before the references as in the arXiv version); correction of a minor inaccuracy in Lemma 3.2 and the initial value proof of Theorem 2.1; a few small improvements in various sections; added thank

    Search for dark matter annual modulation with DarkSide-50

    Full text link
    Dark matter induced event rate in an Earth-based detector is predicted to show an annual modulation as a result of the Earth's orbital motion around the Sun. We searched for this modulation signature using the ionization signal of the DarkSide-50 liquid argon time projection chamber. No significant signature compatible with dark matter is observed in the electron recoil equivalent energy range above 40 eVee40~{\rm eV_{ee}}, the lowest threshold ever achieved in such a search.Comment: 8 pages, 4 figure

    Search for dark matter-nucleon interactions via Migdal effect with DarkSide-50

    Full text link
    Dark matter elastic scattering off nuclei can result in the excitation and ionization of the recoiling atom through the so-called Migdal effect. The energy deposition from the ionization electron adds to the energy deposited by the recoiling nuclear system and allows for the detection of interactions of sub-GeV/c2^2 mass dark matter. We present new constraints for sub-GeV/c2^2 dark matter using the dual-phase liquid argon time projection chamber of the DarkSide-50 experiment with an exposure of (12306 ±\pm 184) kg d. The analysis is based on the ionization signal alone and significantly enhances the sensitivity of DarkSide-50, enabling sensitivity to dark matter with masses down to 40 MeV/c2^2. Furthermore, it sets the most stringent upper limit on the spin independent dark matter nucleon cross section for masses below 3.63.6 GeV/c2^2.Comment: 7 pages, 3 figure

    Search for dark matter particle interactions with electron final states with DarkSide-50

    Full text link
    We present a search for dark matter particles with sub-GeV/c2c^2 masses whose interactions have final state electrons using the DarkSide-50 experiment's (12306 ±\pm 184) kg d low-radioactivity liquid argon exposure. By analyzing the ionization signals, we exclude new parameter space for the dark matter-electron cross section σˉe\bar{\sigma}_e, the axioelectric coupling constant gAeg_{Ae}, and the dark photon kinetic mixing parameter κ\kappa. We also set the first dark matter direct-detection constraints on the mixing angle ∣Ue4∣2\left|U_{e4}\right|^2 for keV sterile neutrinos.Comment: 6 pages, 2 figure
    • …
    corecore