1,471 research outputs found
Sensitivity of Neutrino Mass Experiments to the Cosmic Neutrino Background
The KATRIN neutrino experiment is a next-generation tritium beta decay
experiment aimed at measuring the mass of the electron neutrino to better than
200 meV at 90% C.L. Due to its intense tritium source, KATRIN can also serve as
a possible target for the process of neutrino capture, {\nu}e +3H \to 3He+ +
e-. The latter process, possessing no energy threshold, is sensitive to the
Cosmic Neutrino Background (C{\nu}B). In this paper, we explore the potential
sensitivity of the KATRIN experiment to the relic neutrino density. The KATRIN
experiment is sensitive to a C{\nu}B over-density ratio of 2.0x 10^9 over
standard concordance model predictions (at 90% C.L.), addressing the validity
of certain speculative cosmological models
Diffuse Surface Scattering in the Plasmonic Resonances of Ultra-Low Electron Density Nanospheres
Localized surface plasmon resonances (LSPRs) have recently been identified in
extremely diluted electron systems obtained by doping semiconductor quantum
dots. Here we investigate the role that different surface effects, namely
electronic spill-out and diffuse surface scattering, play in the optical
properties of these ultra-low electron density nanosystems. Diffuse scattering
originates from imperfections or roughness at a microscopic scale on the
surface. Using an electromagnetic theory that describes this mechanism in
conjunction with a dielectric function including the quantum size effect, we
find that the LSPRs show an oscillatory behavior both in position and width for
large particles and a strong blueshift in energy and an increased width for
smaller radii, consistent with recent experimental results for photodoped ZnO
nanocrystals. We thus show that the commonly ignored process of diffuse surface
scattering is a more important mechanism affecting the plasmonic properties of
ultra-low electron density nanoparticles than the spill-out effect.Comment: 19 pages, 5 figures. Accepted for publication in The Journal of
Physical Chemistry Letter
Surface scattering contribution to the plasmon width in embedded Ag nanospheres
Nanometer-sized metal particles exhibit broadening of the localized surface
plasmon resonance (LSPR) in comparison to its value predicted by the classical
Mie theory. Using our model for the LSPR dependence on non-local surface
screening and size quantization, we quantitatively relate the observed plasmon
width to the nanoparticle radius and the permittivity of the surrounding
medium . For Ag nanospheres larger than 8 nm only the non-local
dynamical effects occurring at the surface are important and, up to a diameter
of 25 nm, dominate over the bulk scattering mechanism. Qualitatively, the LSPR
width is inversely proportional to the particle size and has a nonmonotonic
dependence on the permittivity of the host medium, exhibiting for Ag a maximum
at . Our calculated LSPR width is compared with recent
experimental data.Comment: 11 pages, 4 figures. Accepted for publication in Optics Expres
HeI in the central Giant HII Region of NGC 5253. A 2D observational approach to collisional and radiative transfer effects
ABRIDGED: NGC5253 is an ideal laboratory for detailed studies of starburst
galaxies. We present for the first time in a starburst galaxy a 2D study of the
spatial behavior of collisional and radiative transfer effects in He^+. The HeI
lines are analysed based on data obtained with FLAMES and GMOS. Collisional
effects are negligible for transitions in the singlet cascade while relatively
important for those in the triplet cascade. In particular, they can contribute
up to 20% of the flux in the HeIl7065 line. Radiative transfer effects are
important over an extended and circular area of 30pc in diameter centered at
the Super Star Clusters. HeI abundance, y^+, has been mapped using extinction
corrected fluxes of six HeI lines, realistic assumptions for T_e, n_e, and the
stellar absorption equivalent width as well as the most recent emissivities. We
found a mean of 10^3 y^+ ~80.3 over the mapped area. The relation between the
excitation and the total helium abundance, y_tot, is consistent with no
abundance gradient. Uncertainties in the derivation of He abundances are
dominated by the adopted assumptions. We illustrated the difficulty of
detecting a putative He enrichment due to the presence of Wolf-Rayet stars in
the main GHIIR. Data are marginally consistent with an excess in the N/He ratio
in the N enriched area of the order of both, the atmospheric N/He ratios in WR
stars and the uncertainties estimated for the N/He ratios.Comment: Accepted in Astronomy and Astrophysics; the emissivities presented in
the Corrigendum, Porter et al. 2013, arXiv:1303.5115, have been include
The extinction and dust-to-gas structure of the planetary nebula NGC 7009 observed with MUSE
The large field and wavelength range of MUSE is well suited to mapping
Galactic planetary nebulae (PN). The bright PN NGC 7009 was observed with MUSE
on the VLT during the Science Verification of the instrument in seeing of 0.6".
Emission line maps in hydrogen Balmer and Paschen lines were formed from
analysis of the MUSE cubes. The measured electron temperature and density from
the MUSE cube were employed to predict the theoretical hydrogen line ratios and
map the extinction distribution across the nebula. After correction for the
interstellar extinction to NGC 7009, the internal dust-to-gas ratio (A_V/N_H)
has been mapped for the first time in a PN. The extinction map of NGC 7009 has
considerable structure, broadly corresponding to the morphological features of
the nebula. A large-scale feature in the extinction map, consisting of a crest
and trough, occurs at the rim of the inner shell. The nature of this feature
was investigated and instrumental and physical causes considered; no convincing
mechanisms were identified to produce this feature, other than mass loss
variations in the earlier asymptotic giant branch phase. The dust-to-gas ratio
A_V/N_H increases from 0.7 times the interstellar value to >5 times from the
centre towards the periphery of the ionized nebula. The integrated A_V/N_H is
about 2 times the mean ISM value. It is demonstrated that extinction mapping
with MUSE provides a powerful tool for studying the distribution of PN internal
dust and the dust-to-gas ratio. (Abridged.)Comment: 10 pages, 7 figures. Accepted by A&
- …