4 research outputs found

    Mössbauer thermal scan study of a spin crossover system

    Get PDF
    Programmable Velocity equipment was used to perform a Mössbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz)2(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.Facultad de Ciencias ExactasInstituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Mössbauer thermal scan study of a spin crossover system

    Get PDF
    Programmable Velocity equipment was used to perform a Mössbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz)2(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.Facultad de Ciencias ExactasInstituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    Near-intrinsic energy resolution for 30-662 keV gamma rays in a high pressure xenon electroluminescent TPC

    No full text
    We present the design, data and results from the NEXT prototype for Double Beta and Dark Matter (NEXT-DBDM) detector, a high-pressure gaseous natural xenon electroluminescent time projection chamber (TPC) that was built at the Lawrence Berkeley National Laboratory. It is a prototype of the planned NEXT-100 136Xe neutrino-less double beta decay (0νββ) experiment with the main objectives of demonstrating near-intrinsic energy resolution at energies up to 662 keV and of optimizing the NEXT-100 detector design and operating parameters. Energy resolutions of ∼1% FWHM for 662 keV gamma rays were obtained at 10 and 15 atm and ∼5% FWHM for 30 keV fluorescence xenon X-rays. These results demonstrate that 0.5% FWHM resolutions for the 2459 keV hypothetical neutrino-less double beta decay peak are realizable. This energy resolution is a factor 7-20 better than that of the current leading 0νββ experiments using liquid xenon and thus represents a significant advancement. We present also first results from a track imaging system consisting of 64 silicon photo-multipliers recently installed in NEXT-DBDM that, along with the excellent energy resolution, demonstrates the key functionalities required for the NEXT-100 0νββ searc
    corecore