155 research outputs found

    Neurogenesis in Neurodegenerative Diseases: Role of MFG-E8

    Get PDF
    Neurodegenerative diseases are devastating medical conditions with no effective treatments. Restoration of impaired neurogenesis represents a promising therapeutic strategy for neurodegenerative diseases. Milk fat globule-epidermal growth factor-factor VIII (MFG-E8) is a secretory glycoprotein that plays a wide range of cellular functions including phagocytosis of apoptotic cells, anti-inflammation, tissue regeneration, and homeostasis. The beneficial role of MFG-E8 has been shown in cerebral ischemia (stroke), neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, and traumatic brain injury. In stroke, MFG-E8 promotes neural stem cell proliferation and their migration toward the ischemic brain tissues. These novel functions of MFG-E8 are primarily mediated through its receptor αvβ3-integrin. Here, we focus on the pivotal role of MFG-E8 in protecting against neuronal diseases by promoting neurogenesis. We also discuss the mechanisms of MFG-E8-mediated neural stem/progenitor cell (NSPC) proliferation and migration, and the potential of MFG-E8 for neural stem cell niche maintenance via angiogenesis. We propose further investigation of the molecular pathways for MFG-E8 signaling in NSPC and effective strategies for MFG-E8 delivery across the blood–brain barrier, which will help develop MFG-E8 as a future drug candidate for the bedside management of neurodegenerative diseases

    Anti-DAMP therapies for acute inflammation

    Get PDF
    Shock, affecting a third of intensive care patients, remains a highly fatal condition despite advances in critical care, irrespective of its etiology. Cellular injury, central to shock pathophysiology, triggers the release of damage-associated molecular patterns (DAMPs), such as extracellular cold-inducible RNA-binding protein (eCIRP), high-mobility group box 1 (HMGB1), histones 3 and 4, and adenosine triphosphate (ATP). These molecules are confined within cells under normal conditions and perform essential physiological functions. However, upon their extracellular release during cellular injury, they act as alarmins, engaging pattern recognition receptors (PRRs) on immune cells. This interaction triggers a robust inflammatory response, propagating systemic inflammation and exacerbating tissue damage. Excessive DAMP-mediated inflammation is increasingly recognized as a major contributor to morbidity and mortality in a wide range of critical illnesses, including trauma, hemorrhagic shock, sepsis, and organ ischemia/reperfusion (I/R) injury. These pathologies are characterized by uncontrolled inflammatory cascades driven by the deleterious effects of DAMPs, underscoring the urgent need for targeted therapeutic interventions. This review explores the pivotal role of DAMPs in the pathogenesis of acute inflammation and shock, highlighting cutting-edge therapeutic strategies aimed at mitigating their effects. Emerging approaches include monoclonal antibodies, decoy receptors, small molecule inhibitors, and scavengers designed to neutralize or inhibit DAMP activity. The discussion also delves into the potential clinical applications of these interventions, offering insights into how targeting DAMPs could transform the management of shock and improve patient outcomes

    Chromatin as alarmins in necrotizing enterocolitis

    Get PDF
    Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease primarily affecting premature neonates, marked by poorly understood pro-inflammatory signaling cascades. Recent advancements have shed light on a subset of endogenous molecular patterns, termed chromatin-associated molecular patterns (CAMPs), which belong to the broader category of damage-associated molecular patterns (DAMPs). CAMPs play a crucial role in recognizing pattern recognition receptors and orchestrating inflammatory responses. This review focuses into the realm of CAMPs, highlighting key players such as extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1), cell-free DNA, neutrophil extracellular traps (NETs), histones, and extracellular RNA. These intrinsic molecules, often perceived as foreign, have the potential to trigger immune signaling pathways, thus contributing to NEC pathogenesis. In this review, we unravel the current understanding of the involvement of CAMPs in both preclinical and clinical NEC scenarios. We also focus on elucidating the downstream signaling pathways activated by these molecular patterns, providing insights into the mechanisms that drive inflammation in NEC. Moreover, we scrutinize the landscape of targeted therapeutic approaches, aiming to mitigate the impact of tissue damage in NEC. This in-depth exploration offers a comprehensive overview of the role of CAMPs in NEC, bridging the gap between preclinical and clinical insights

    DAMPs and radiation injury

    Get PDF
    The heightened risk of ionizing radiation exposure, stemming from radiation accidents and potential acts of terrorism, has spurred growing interests in devising effective countermeasures against radiation injury. High-dose ionizing radiation exposure triggers acute radiation syndrome (ARS), manifesting as hematopoietic, gastrointestinal, and neurovascular ARS. Hematopoietic ARS typically presents with neutropenia and thrombocytopenia, while gastrointestinal ARS results in intestinal mucosal injury, often culminating in lethal sepsis and gastrointestinal bleeding. This deleterious impact can be attributed to radiation-induced DNA damage and oxidative stress, leading to various forms of cell death, such as apoptosis, necrosis and ferroptosis. Damage-associated molecular patterns (DAMPs) are intrinsic molecules released by cells undergoing injury or in the process of dying, either through passive or active pathways. These molecules then interact with pattern recognition receptors, triggering inflammatory responses. Such a cascade of events ultimately results in further tissue and organ damage, contributing to the elevated mortality rate. Notably, infection and sepsis often develop in ARS cases, further increasing the release of DAMPs. Given that lethal sepsis stands as a major contributor to the mortality in ARS, DAMPs hold the potential to function as mediators, exacerbating radiation-induced organ injury and consequently worsening overall survival. This review describes the intricate mechanisms underlying radiation-induced release of DAMPs. Furthermore, it discusses the detrimental effects of DAMPs on the immune system and explores potential DAMP-targeting therapeutic strategies to alleviate radiation-induced injury

    Radiation upregulates macrophage TREM-1 expression to exacerbate injury in mice

    Get PDF
    IntroductionExposure to high-dose ionizing radiation causes tissue injury, infections and even death due to immune dysfunction. The triggering receptor expressed on myeloid cells-1 (TREM-1) has been demonstrated to critically amplify and dysregulate immune responses. However, the role of TREM-1 in radiation injury remains unknown. Extracellular cold-inducible RNA-binding protein (eCIRP), a new damage-associated molecular pattern, is released from activated or stressed cells during inflammation. We hypothesized that ionizing radiation upregulates TREM-1 expression via eCIRP release to worsen survivalMethodsRAW264.7 cells and peritoneal macrophages collected from C57BL/6 wild-type (WT) mice were exposed to 5- and 10-Gray (Gy) radiation. C57BL/6 WT and CIRP-/- mice underwent 10-Gy total body irradiation (TBI). TREM-1 expression on RAW264.7 cells and peritoneal macrophages in vitro and in vivo were evaluated by flow cytometry. eCIRP levels in cell culture supernatants and in peritoneal lavage isolated from irradiated mice were evaluated by Western blotting. We also evaluated 30-day survival in C57BL/6 WT, CIRP-/- and TREM-1-/- mice after 6.5-Gy TBI.ResultsThe surface protein and mRNA levels of TREM-1 in RAW264.7 cells were significantly increased at 24 h after 5- and 10-Gy radiation exposure. TREM-1 expression on peritoneal macrophages was significantly increased after radiation exposure in vitro and in vivo. eCIRP levels were significantly increased after radiation exposure in cell culture supernatants of peritoneal macrophages in vitro and in peritoneal lavage in vivo. Moreover, CIRP-/- mice exhibited increased survival after 6.5-Gy TBI compared to WT mice. Interestingly, TREM-1 expression on peritoneal macrophages in CIRP-/- mice was significantly decreased compared to that in WT mice at 24 h after 10-Gy TBI. Furthermore, 30-day survival in TREM-1-/- mice was significantly increased to 64% compared to 20% in WT mice after 6.5-Gy TBI.ConclusionOur data indicate that ionizing radiation increases TREM-1 expression in macrophages via the release of eCIRP, and TREM-1 contributes to worse survival after total body irradiation. Thus, targeting TREM-1 could have the potential to be developed as a novel medical countermeasure for radiation injury

    BMAL2 promotes eCIRP-induced macrophage endotoxin tolerance

    Get PDF
    BackgroundThe disruption of the circadian clock is associated with inflammatory and immunological disorders. BMAL2, a critical circadian protein, forms a dimer with CLOCK, activating transcription. Extracellular cold-inducible RNA-binding protein (eCIRP), released during sepsis, can induce macrophage endotoxin tolerance. We hypothesized that eCIRP induces BMAL2 expression and promotes macrophage endotoxin tolerance through triggering receptor expressed on myeloid cells-1 (TREM-1).MethodsC57BL/6 wild-type (WT) male mice were subjected to sepsis by cecal ligation and puncture (CLP). Serum levels of eCIRP 20 h post-CLP were assessed by ELISA. Peritoneal macrophages (PerM) were treated with recombinant mouse (rm) CIRP (eCIRP) at various doses for 24 h. The cells were then stimulated with LPS for 5 h. The levels of TNF-α and IL-6 in the culture supernatants were assessed by ELISA. PerM were treated with eCIRP for 24 h, and the expression of PD-L1, IL-10, STAT3, TREM-1 and circadian genes such as BMAL2, CRY1, and PER2 was assessed by qPCR. Effect of TREM-1 on eCIRP-induced PerM endotoxin tolerance and PD-L1, IL-10, and STAT3 expression was determined by qPCR using PerM from TREM-1-/- mice. Circadian gene expression profiles in eCIRP-treated macrophages were determined by PCR array and confirmed by qPCR. Induction of BMAL2 activation in bone marrow-derived macrophages was performed by transfection of BMAL2 CRISPR activation plasmid. The interaction of BMAL2 in the PD-L1 promoter was determined by computational modeling and confirmed by the BIAcore assay.ResultsSerum levels of eCIRP were increased in septic mice compared to sham mice. Macrophages pre-treated with eCIRP exhibited reduced TNFα and IL-6 release upon LPS challenge, indicating macrophage endotoxin tolerance. Additionally, eCIRP increased the expression of PD-L1, IL-10, and STAT3, markers of immune tolerance. Interestingly, TREM-1 deficiency reversed eCIRP-induced macrophage endotoxin tolerance and significantly decreased PD-L1, IL-10, and STAT3 expression. PCR array screening of circadian clock genes in peritoneal macrophages treated with eCIRP revealed the elevated expression of BMAL2, CRY1, and PER2. In eCIRP-treated macrophages, TREM-1 deficiency prevented the upregulation of these circadian genes. In macrophages, inducible BMAL2 expression correlated with increased PD-L1 expression. In septic human patients, blood monocytes exhibited increased expression of BMAL2 and PD-L1 in comparison to healthy subjects. Computational modeling and BIAcore assay identified a putative binding region of BMAL2 in the PD-L1 promoter, suggesting BMAL2 positively regulates PD-L1 expression in macrophages.ConclusioneCIRP upregulates BMAL2 expression via TREM-1, leading to macrophage endotoxin tolerance in sepsis. Targeting eCIRP to maintain circadian rhythm may correct endotoxin tolerance and enhance host resistance to bacterial infection

    Identification of a multiple DAMP scavenger mimicking the DAMP-binding site of TLR4 to ameliorate lethal sepsis

    Get PDF
    Sepsis is a life-threatening organ dysfunction caused by a dysregulated host response to infection. Current treatments are limited to source control and supportive care, underscoring the urgent need for novel therapeutic interventions. Endogenous molecules released from stressed or damaged cells, known as damage-associated molecular patterns (DAMPs), exacerbate inflammation, organ injury, and mortality in sepsis. In this study, we discovered a novel therapeutic compound, opsonic peptide 18 (OP18), designed to scavenge multiple DAMPs, including extracellular cold-inducible RNA-binding protein (eCIRP), high mobility group box 1 (HMGB1) and histone H3, by facilitating their clearance via macrophages. OP18 was developed by identifying a 15-amino acid (aa) binding site within the extracellular domain of Toll-like receptor 4 (TLR4) shared by eCIRP, HMGB1, and histone H3, then extending it with an αvβ3-integrin binding RGD (Arg-Gly-Asp) motif, resulting in an 18-aa peptide. Our data show that OP18 binds strongly to the above DAMPs and interacts with αvβ3-integrin on macrophages, promoting phagocytosis of DAMPs and facilitating their lysosomal degradation. In vitro, OP18 reduced the production of the inflammatory cytokine TNF-α in DAMP-activated macrophages and restored mitochondrial function, as evidenced by improved oxygen consumption rate (OCR) and ATP production. In a lethal sepsis model induced by cecal ligation and puncture (CLP), DAMP levels were significantly elevated, while OP18 treatment markedly reduced the serum DAMP levels. Additionally, OP18-treated septic mice demonstrated reduced blood organ injury markers, decreased proinflammatory cytokine levels, attenuated ALI, and improved survival. These findings establish OP18 as a promising therapeutic molecule that reduces DAMP-induced inflammation, offering a potential strategy to improve outcomes in lethal sepsis

    A novel molecule targeting neutrophil-mediated B-1a cell trogocytosis attenuates sepsis-induced acute lung injury

    Get PDF
    Sepsis is a dysregulated immune response to infection. B-1a cells play a crucial role in maintaining immuno-physiologic homeostasis. Sialic acid-binding immunoglobulin-like lectin G (Siglec-G) regulates B-1a cell’s behavior and function. Trogocytosis is the process by which one cell acquires portions of another cell’s plasma membrane and cytoplasm through direct contact. During sepsis, neutrophils accumulate in the lungs and serosal cavities, while B-1a cells decrease. We hypothesized that neutrophil-mediated trogocytosis causes B-1a cell depletion in sepsis, and that targeting this process could preserve B-1a cells and attenuate sepsis-induced acute lung injury (ALI). Sepsis was induced in mice by cecal ligation and puncture (CLP). Twenty hours after CLP, B-1a cells (CD19+B220lo/-CD23-CD5+) in the pleural and peritoneal cavities were quantified, and neutrophil engulfment of B-1a cells as well as trogocytosis were assessed. We also examine the interaction between Siglec-G and the “don’t-eat-me” signal receptor, CD47. Our data showed that B-1a cell numbers and frequencies in the pleural and peritoneal cavities were significantly decreased in sepsis. Neutrophils co-cultured with B-1a cells significantly increased B-1a cell internalization via trogocytosis. We observed a strong binding interaction between Siglec-G and CD47, which facilitates neutrophil-mediated trogocytosis by compromising CD47 function. We discovered a novel 11-aa therapeutic peptide, named Compound 11 (C11), derived from the CD47 region interacting with Siglec-G. C11 effectively preserved B-1a cell populations, significantly reduced pro-inflammatory cytokine levels, alleviated ALI, and improved survival in sepsis. Our findings highlight the Siglec-G/CD47 axis on B-1a cells as a key regulator of neutrophil-mediated B-1a cell depletion. Targeting this pathway with C11 represents a promising therapeutic strategy to mitigate immune dysregulation and improve sepsis outcomes

    Cyclic arginine-glycine-aspartate attenuates acute lung injury in mice after intestinal ischemia/reperfusion

    Full text link
    INTRODUCTION: Intestinal ischemia is a critical problem resulting in multiple organ failure and high mortality of 60 to 80%. Acute lung injury (ALI) is a common complication after intestinal ischemia/reperfusion (I/R) injuries and contributes to the high mortality rate. Moreover, activated neutrophil infiltration into the lungs is known to play a significant role in the progression of ALI. Integrin-mediated interaction is involved in neutrophil transmigration. Synthetic peptides containing an arginine-glycine-aspartate sequence compete with adhesive proteins and inhibit integrin-mediated interaction and signaling. Thus, we hypothesized that the administration of a cyclic arginine-glycine-aspartate peptide (cRGD) inhibited neutrophil infiltration and provided protection against ALI induced by intestinal I/R. METHODS: Ischemia in adult male C57BL/6 mice was induced by fastening the superior mesenteric artery with 4-0 suture. Forty-five minutes later, the vascular suture was released to allow reperfusion. cRGD (5 mg/kg body weight) or normal saline (vehicle) was administered by intraperitoneal injection 1 hour prior to ischemia. Blood, gut, and lung tissues were collected 4 hours after reperfusion for various measurements. RESULTS: Intestinal I/R caused severe widespread injury to the gut and lungs. Treatment with cRGD improved the integrity of microscopic structures in the gut and lungs, as judged by histological examination. Intestinal I/R induced the expression of β(1), β(2 )and β(3 )integrins, intercellular adhesion molecule-1, and fibronectin. cRGD significantly inhibited myeloperoxidase activity in the gut and lungs, as well as neutrophils and macrophages infiltrating the lungs. cRGD reduced the levels of TNF-α and IL-6 in serum, in addition to IL-6 and macrophage inflammatory protein-2 in the gut and lungs. Furthermore, the number of TUNEL-staining cells and levels of cleaved caspase-3 in the lungs were significantly lowered in the cRGD-treated mice in comparison with the vehicle mice. CONCLUSIONS: Treatment with cRGD effectively protected ALI and gut injury, lowered neutrophil infiltration, suppressed inflammation, and inhibited lung apoptosis after intestinal I/R. Thus, there is potential for developing cRGD as a treatment for patients suffering from ALI caused by intestinal I/R

    Pre-Treatment of Recombinant Mouse MFG-E8 Downregulates LPS-Induced TNF-α Production in Macrophages via STAT3-Mediated SOCS3 Activation

    Get PDF
    Milk fat globule-epidermal growth factor factor 8 (MFG-E8) regulates innate immune function by modulating cellular signaling, which is less understood. Herein, we aimed to investigate the direct anti-inflammatory role of MFG-E8 in macrophages by pre-treatment with recombinant murine MFG-E8 (rmMFG-E8) followed by stimulation with LPS in RAW264.7 cells and in peritoneal macrophages, isolated from wild-type (WT) or MFG-E8−/− mice. RAW264.7 cells and mouse peritoneal macrophages treated with rmMFG-E8 significantly downregulated LPS-induced TNF-α mRNA by 25% and 24%, and protein levels by 29% and 23%, respectively (P<0.05). Conversely, peritoneal macrophages isolated from MFG-E8−/− mice produced 28% higher levels of TNF-α, as compared to WT mice when treated with LPS. In in vivo, endotoxemia induced by intraperitoneal injection of LPS (5 mg/kg BW), at 4 h after induction, serum level of TNF-α was significantly higher in MFG-E8−/− mice (837 pg/mL) than that of WT (570 pg/mL, P<0.05). To elucidate the direct anti-inflammatory effect of MFG-E8, we examined STAT3 and its target gene, SOCS3. Treatment with rmMGF-E8 significantly induced pSTAT3 and SOCS3 in macrophages. Similar results were observed in in vivo treatment of rmMFG-E8 in peritoneal cells and splenic tissues. Pre-treatment with rmMFG-E8 significantly reduced LPS-induced NF-κB p65 contents. These data clearly indicated that rmMFG-E8 upregulated SOCS3 which in turn interacted with NF-κB p65, facilitating negative regulation of TLR4 signaling for LPS-induced TNF-α production. Our findings strongly suggest that MFG-E8 is a direct anti-inflammatory molecule, and that it could be developed as a therapy in attenuating inflammation and tissue injury
    corecore