125 research outputs found

    Evaluating Access to Potable Water and Basic Sanitation in Ghana's Largest Urban Slum Community: Old Fadama, Accra

    Get PDF
    Access to potable water and basic sanitation in urban poor communities remains a critical issue in the developing world. This paper examines access to potable water and basic sanitation in Ghana's largest urban slum and the level of commitment by stakeholders to improve the current conditions. It drew on an extensive field survey, interviews, focus group discussions and drinking water quality analyses. The study revealed that the community depend entirely on vended water for their daily water supply needs. Apart from being sold at exorbitant prices, the sources of drinking water is also contaminated with attendant health risks. Household toilets are non-existent in the community and thus residents rely exclusively on public latrines; KVIP and pan latrines which are also inadequate. This partly accounts for the practice of open defecation in the community with possible health effects such as diarrhea and cholera. Indiscriminate dumping of refuse, choked drains and pools of stagnant water are ubiquitous thereby posing health threats. There is a low level of commitment to improving access to water and sanitation in the community by major stakeholders in spite of the glaring health effects. The outcomes of this study will be useful to relevant stakeholders and authorities in developing suitable strategies for improving access to water and sanitation for urban poor communities. Keywords: Accra, health, Old Fadama, sanitation, slum, wate

    Heavy Metal Contamination of Soil by Quarry Dust at Asonomaso in the Ashanti Region of Ghana

    Get PDF
    Environmental pollution caused by quarry dust and heavy metals is a problem for many years in Asonomaso. The main aim of this paper was to determine the amount and types of heavy metal pollutants associated with the quarrying and also identify the probable adverse effects they have on human health and the environment. About 30 quarry dust samples were collected from two sampling sites between August and November, 2011 for analysis using AAS. Evaluation using SPSS 17.0 statistical programme revealed appreciable amounts of As, Hg, Mn, Cu Zn and Pb and Fe which differ from one site to another. AAS analysis revealed relatively higher concentrations of As, Ag, Cu and Zn in both primary and secondary quarry dust than dust away from the site. However, concentrations of Mn, Fe and Pb were higher in secondary quarry dust and dust away from the primary site. Heavy metal pollution of the Asonomaso environ attributable to the quarry is thus significant and its repercussions on the health of the residents must be seriously looked at. Keywords: Quarry Dust, Heavy-metal, Impact, Asonomaso

    Spin excitations in a single La2_2CuO4_4 layer

    Full text link
    The dynamics of S=1/2 quantum spins on a 2D square lattice lie at the heart of the mystery of the cuprates \cite{Hayden2004,Vignolle2007,Li2010,LeTacon2011,Coldea2001,Headings2010,Braicovich2010}. In bulk cuprates such as \LCO{}, the presence of a weak interlayer coupling stabilizes 3D N\'{e}el order up to high temperatures. In a truly 2D system however, thermal spin fluctuations melt long range order at any finite temperature \cite{Mermin1966}. Further, quantum spin fluctuations transfer magnetic spectral weight out of a well-defined magnon excitation into a magnetic continuum, the nature of which remains controversial \cite{Sandvik2001,Ho2001,Christensen2007,Headings2010}. Here, we measure the spin response of \emph{isolated one-unit-cell thick layers} of \LCO{}. We show that coherent magnons persist even in a single layer of \LCO{} despite the loss of magnetic order, with no evidence for resonating valence bond (RVB)-like spin correlations \cite{Anderson1987,Hsu1990,Christensen2007}. Thus these excitations are well described by linear spin wave theory (LSWT). We also observe a high-energy magnetic continuum in the isotropic magnetic response. This high-energy continuum is not well described by 2 magnon LSWT, or indeed any existing theories.Comment: Revised version to appear in Nature Materials; 6 pages,4 figure

    Transcaval versus Supra-Aortic Vascular Accesses for Transcatheter Aortic Valve Replacement: A Systematic Review with Meta-Analysis.

    Get PDF
    A growing body of evidence suggests that extrathoracic vascular accesses for transcatheter aortic valve replacement (TAVR) yield favorable outcomes and can be considered as primary alternatives when the gold-standard transfemoral access is contraindicated. Data comparing the transcaval (TCv) to supra-aortic (SAo) approaches (transcarotid, transsubclavian, and transaxillary) for TAVR are lacking. We aimed to compare the outcomes and safety of TCv and SAo accesses for TAVR as alternatives to transfemoral TAVR. A systematic review with meta-analysis was performed by searching PubMed/MEDLINE and EMBASE databases for all articles comparing TCv-TAVR against SAo-TAVR published until September 2023. Outcomes included in-hospital or 30-day all-cause mortality (ACM) and postoperative complications. A total of three studies with 318 TCv-TAVR and 179 SAo-TAVR patients were included. No statistically significant difference was found regarding in-hospital or 30-day ACM (relative risk [RR] 1.04, 95% confidence interval [CI] 0.47-2.34, p = 0.91), major bleeding, the need for blood transfusions, major vascular complications, and acute kidney injury. TCv-TAVR was associated with a non-statistically significant lower rate of neurovascular complications (RR 0.39, 95%CI 0.14-1.09, p = 0.07). These results suggest that both approaches may be considered as first-line alternatives to transfemoral TAVR, depending on local expertise and patients' anatomy. Additional data from long-term cohort studies are needed

    Multidisciplinary recommendations for essential baseline functional and laboratory tests to facilitate early diagnosis and management of immune-related adverse events among cancer patients.

    Get PDF
    Immune checkpoint inhibitors (ICIs) have fundamentally changed the treatment landscape of various cancers. While ICI treatments result in improved survival, quality of life and are cost-effective, the majority of patients experience at least one immune-related adverse event (irAE). Many of these side effects cause little discomfort or are asymptomatic; however, irAEs can affect any organ and are potentially life-threatening. Consequently, early diagnosis and appropriate treatment of irAEs are critical for optimizing long-term outcomes and quality of life in affected patients. Some irAEs are diagnosed according to typical symptoms, others by abnormal findings from diagnostic tests. While there are various guidelines addressing the management of irAEs, recommendations for the early recognition of irAEs as well as the optimal extent and frequency of laboratory tests are mostly lacking. In clinical practice, blood sampling is usually performed before each ICI administration (i.e., every 2-3 weeks), often for several months, representing a burden for patients as well as health care systems. In this report, we propose essential laboratory and functional tests to improve the early detection and management of irAEs and in cancer patients treated with ICIs. These multidisciplinary expert recommendations regarding essential laboratory and functional tests can be used to identify possible irAEs at an early time point, initiate appropriate interventions to improve patient outcomes, and reduce the burden of blood sampling during ICI treatment

    A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex

    Get PDF
    Pyramidal cells (PCs) form the backbone of the layered structure of the neocortex, and plasticity of their synapses is thought to underlie learning in the brain. However, such long-term synaptic changes have been experimentally characterized between only a few types of PCs, posing a significant barrier for studying neocortical learning mechanisms. Here we introduce a model of synaptic plasticity based on data-constrained postsynaptic calcium dynamics, and show in a neocortical microcircuit model that a single parameter set is sufficient to unify the available experimental findings on long-term potentiation (LTP) and long-term depression (LTD) of PC connections. In particular, we find that the diverse plasticity outcomes across the different PC types can be explained by cell-type-specific synaptic physiology, cell morphology and innervation patterns, without requiring type-specific plasticity. Generalizing the model to in vivo extracellular calcium concentrations, we predict qualitatively different plasticity dynamics from those observed in vitro. This work provides a first comprehensive null model for LTP/LTD between neocortical PC types in vivo, and an open framework for further developing models of cortical synaptic plasticity.We thank Michael Hines for helping with synapse model implementation in NEURON; Mariana Vargas-Caballero for sharing NMDAR data; Veronica Egger for sharing in vitro data and for clarifications on the analysis methods; Jesper Sjöström for sharing in vitro data, helpful discussions, and feedback on the manuscript; Ralf Schneggenburger for helpful discussions and clarifications on the NMDAR calcium current model; Fabien Delalondre for helpful discussions; Francesco Casalegno and Taylor Newton for helpful discussion on model fitting; Daniel Keller for helpful discussions on the biophysics of synaptic plasticity; Natali Barros-Zulaica for helpful discussions on MVR modeling and generalization; Srikanth Ramaswamy, Michael Reimann and Max Nolte for feedback on the manuscript; Wulfram Gerstner and Guillaume Bellec for helpful discussions on synaptic plasticity modeling. This study was supported by funding to the Blue Brain Project, a research center of the École polytechnique fédérale de Lausanne, from the Swiss government’s ETH Board of the Swiss Federal Institutes of Technology. E.B.M. received additional support from the CHU Sainte-Justine Research Center (CHUSJRC), the Institute for Data Valorization (IVADO), Fonds de Recherche du Québec–Santé (FRQS), the Canada CIFAR AI Chairs Program, the Quebec Institute for Artificial Intelligence (Mila), and Google. R.B.P. and J.DF. received support from the Spanish “Ministerio de Ciencia e Innovación” (grant PGC2018-094307-B-I00). M.D. and I.S. were supported by a grant from the ETH domain for the Blue Brain Project, the Gatsby Charitable Foundation, and the Drahi Family Foundation
    corecore