54 research outputs found

    A Study of Instructional Strategies, Behavior Management Techniques, and Classroom Adaptations used by Technology Education Teachers with Seriously Emotionally Disturbed Students

    Get PDF
    The goals for this research paper will be to answer the following questions; 1. What instructional strategies are most effective with emotionally disturbed students? 2. Are there behavior management techniques that work well with this population? 3. Are there adaptations that can be made in the classroom environment to facilitate the mainstreaming of emotionally disturbed students

    COEXISTING PROSTATE CANCER FOUND AT THE TIME OF HOLMIUM LASER ENUCLEATION OF THE PROSTATE FOR BENIGN PROSTATIC HYPERPLASIA: PREDICTING ITS PRESENCE AND GRADE IN ANALYZED TISSUE

    Get PDF
    Objective: To determine the incidence of prostate cancer identified on holmium laser enucleation of the prostate (HoLEP) specimens and evaluate variables associated with prostate cancer identification. Patients and Methods: All patients undergoing HoLEP between 1998 and 2013 were identified. Patients with a known history of prostate cancer were excluded. Multivariable logistic regression assessed variables associated with identification of prostate cancer on HoLEP specimens and Gleason 7 or higher prostate cancer among the malignant cases. The Gleason grade was used as a proxy for disease severity. Each of the models was adjusted for age, preoperative prostate-specific antigen (PSA), and HoLEP specimen weight. Results: The cohort comprised 1272 patients, of whom 103 (8.1%) had prostate cancer identified. Prostate cancer cases had higher pre-HoLEP PSA (p=0.06) but lower HoLEP specimen weight (p=0.01). On multivariate logistic regression, age and preoperative PSA were associated with increased odds of prostate cancer being present (p<0.01 each), while increasing HoLEP specimen weight was associated with decreased odds of prostate cancer (p<0.001). Men older than 80 had 20% predicted probability of being diagnosed with prostate cancer. Seventy-eight percent of prostate cancer cases were Gleason 6 or less. The pre-HoLEP PSA was associated with increased adjusted odds of intermediate- or high-grade prostate cancer. Conclusion: Prostate cancer identified by HoLEP is not uncommon, but is generally a low-risk disease. Older patients with smaller prostate glands have the highest odds of prostate cancer identification

    Predictors of Enucleation and Morcellation Time During Holmium Laser Enucleation of the Prostate.

    Get PDF
    Objective To examine predictors of enucleation and morcellation times within a large cohort of men undergoing holmium laser enucleation of the prostate (HoLEP) for benign prostatic hypertrophy. Materials and Methods Preoperative, perioperative, and postoperative clinical characteristics were available from men treated with HoLEP between 1998 and 2013 at Indiana University Health Methodist Hospital. Stepwise linear regression was performed to determine clinical variables which are associated with enucleation and morcellation times. Results We identified 960 patients who underwent HoLEP. Average (range) enucleation time was 65.7 (11-245) minutes and morcellation time was 19.7 (3-260) minutes. History of anticoagulation was associated with a small decrease in enucleation time (P = .013) whereas increasing HoLEP specimen weight was associated with increasing enucleation time (P <.001). History of intermittent catheterization, urinary tract infections (UTI), presence of dense prostatic tissue (colloquially referred to as “beach balls”), and increasing specimen weight were associated with increasing morcellation time (P <.05 each). Having HoLEP performed by a less experienced urologist was associated with longer enucleation and morcellation times. Conclusion Prostate volume is significantly associated with increased enucleation and morcellation times during HoLEP. Additionally, history of UTI and clean intermittent catheterization (CIC) is associated with modest increases in enucleation and morcellation times. Dense enucleated prostate tissue significantly impacts the ability to morcellate effectively. Increasing surgeon experience can significantly improve both enucleation and morcellation efficiency

    Metabotropic glutamate receptors in GtoPdb v.2023.1

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [351]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [140]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [200, 275, 268, 403]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organisation similar to that of other GPCRs, although the helices appear more compacted [88, 433, 62]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor homodimers [217, 191] and heterodimers [91]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [89]. First characterised in transfected cells, co-localisation and specific pharmacological properties suggest the existence of such heterodimers in the brain [270, 440, 145, 283, 259, 218]. Beyond heteromerisation with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [140]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonised by (S)-hexylhomoibotenic acid [235]. Group-II mGlu receptors may be activated by LY389795 [269], LY379268 [269], eglumegad [354, 434], DCG-IV and (2R,3R)-APDC [355], and antagonised by eGlu [170] and LY307452 [425, 105]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [130]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [185]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as &#8216;potentiators&#8217; of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist

    Metabotropic glutamate receptors in GtoPdb v.2021.3

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [347]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate [138]. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. mGlu form constitutive dimers, cross-linked by a disulfide bridge. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [198, 271, 264, 399]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [87, 429, 61]. Recent advances in cryo-electron microscopy have provided structures of full-length mGlu receptor dimers [189]. Studies have revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [88]. First well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [266].[436, 143, 279]. Beyond heteromerization with other mGlu receptor subtypes, increasing evidence suggests mGlu receptors form heteromers and larger order complexes with class A GPCRs (reviewed in [138]). The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [30] and antagonized by (S)-hexylhomoibotenic acid [232]. Group-II mGlu receptors may be activated by LY389795 [265], LY379268 [265], eglumegad [350, 430], DCG-IV and (2R,3R)-APDC [351], and antagonised by eGlu [168] and LY307452 [421, 103]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [128]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [183]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as &#8216;potentiators&#8217; of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist

    Metabotropic glutamate receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    Metabotropic glutamate (mGlu) receptors (nomenclature as agreed by the NC-IUPHAR Subcommittee on Metabotropic Glutamate Receptors [334]) are a family of G protein-coupled receptors activated by the neurotransmitter glutamate. The mGlu family is composed of eight members (named mGlu1 to mGlu8) which are divided in three groups based on similarities of agonist pharmacology, primary sequence and G protein coupling to effector: Group-I (mGlu1 and mGlu5), Group-II (mGlu2 and mGlu3) and Group-III (mGlu4, mGlu6, mGlu7 and mGlu8) (see Further reading).Structurally, mGlu are composed of three juxtaposed domains: a core G protein-activating seven-transmembrane domain (TM), common to all GPCRs, is linked via a rigid cysteine-rich domain (CRD) to the Venus Flytrap domain (VFTD), a large bi-lobed extracellular domain where glutamate binds. The structures of the VFTD of mGlu1, mGlu2, mGlu3, mGlu5 and mGlu7 have been solved [190, 262, 255, 386]. The structure of the 7 transmembrane (TM) domains of both mGlu1 and mGlu5 have been solved, and confirm a general helical organization similar to that of other GPCRs, although the helices appear more compacted [85, 415, 59]. mGlu form constitutive dimers crosslinked by a disulfide bridge. Recent studies revealed the possible formation of heterodimers between either group-I receptors, or within and between group-II and -III receptors [86]. Although well characterized in transfected cells, co-localization and specific pharmacological properties also suggest the existence of such heterodimers in the brain [422, 257]. The endogenous ligands of mGlu are L-glutamic acid, L-serine-O-phosphate, N-acetylaspartylglutamate (NAAG) and L-cysteine sulphinic acid. Group-I mGlu receptors may be activated by 3,5-DHPG and (S)-3HPG [29] and antagonized by (S)-hexylhomoibotenic acid [223]. Group-II mGlu receptors may be activated by LY389795 [256], LY379268 [256], eglumegad [337, 416], DCG-IV and (2R,3R)-APDC [338], and antagonised by eGlu [161] and LY307452 [408, 100]. Group-III mGlu receptors may be activated by L-AP4 and (R,S)-4-PPG [125]. An example of an antagonist selective for mGlu receptors is LY341495, which blocks mGlu2 and mGlu3 at low nanomolar concentrations, mGlu8 at high nanomolar concentrations, and mGlu4, mGlu5, and mGlu7 in the micromolar range [176]. In addition to orthosteric ligands that directly interact with the glutamate recognition site, allosteric modulators that bind within the TM domain have been described. Negative allosteric modulators are listed separately. The positive allosteric modulators most often act as 'potentiators' of an orthosteric agonist response, without significantly activating the receptor in the absence of agonist
    • …
    corecore