4 research outputs found

    New Technologies for Enabling Food Production Beyond LEO

    Get PDF
    NASA has identified the need for robust and sustainable Pick-and-Eat systems for supplementing crew diets with fresh leafy green crops in near-term LEO (Low Earth Orbit), cislunar, and lunar missions. Spaceflight plant growth systems have been primarily designed for conducting space biology studies, but these systems are not optimal for sustained food production. Improved water and nutrient delivery subsystems that do not use bulky and non-reusable media are needed for decreasing the mass of the food production system. Autonomous technologies for monitoring plant health and food safety are needed for ensuring that the food produced is suitable supplementing crew diets with fresh, nutritious salad crops. Improved plant imaging techniques used for high-throughput phenotyping can be leveraged for monitoring plant health. Near-real-time measurements of the microbial ecology of food production systems are needed for assessing food safety. Furthermore, newly identified plant species and cultivars with improved growth habits and contents of antioxidants, vitamins, and minerals when grown in spaceflight environmental conditions are needed. These improvements in food production technologies will enable the design of sustainable life support systems for manned exploration missions beyond Low Earth Orbit

    New Frontiers in Food Production Beyond LEO

    Get PDF
    New technologies will be needed as mankind moves towards exploration of cislunar space, the Moon and Mars. Although many advances in our understanding of the effects of spaceflight on plant growth have been achieved in the last 40 years, spaceflight plant growth systems have been primarily designed to support space biology studies. Recently, the need for a sustainable and robust food system for future missions beyond Low Earth Orbit (LEO) has identified gaps in current technologies for food production. The goal is to develop safe and sustainable food production systems with reduced resupply mass and crew time compared to current systems

    Hardware Validation Test of the Advanced Plant Habitat

    Get PDF
    An automated plant growth facility for conducting plant research supporting space biology and food production project on the International Space Station (ISS)

    FY17 Report Summaries of Five Completed Center Innovation Fund (CIF) Projects for the Highlights/Abstract Section of the FY 2018 CIF Annual Report

    Get PDF
    The Center Innovation Fund Annual Report for FY18 is an annual report for Space Technology Mission Directorate (STMD) Leadership, STMD Principle Technologists, and Center Innovation Fund Management. Attached is the Highlights/Abstract section of this annual report, which is the only section to be shared outside of NASA. Contributors were asked not to include any SBU information for these report summaries
    corecore