132 research outputs found

    Natural Host Genetic Resistance to Lentiviral CNS Disease: A Neuroprotective MHC Class I Allele in SIV-Infected Macaques

    Get PDF
    Human immunodeficiency virus (HIV) infection frequently causes neurologic disease even with anti-retroviral treatment. Although associations between MHC class I alleles and acquired immunodeficiency syndrome (AIDS) have been reported, the role MHC class I alleles play in restricting development of HIV-induced organ-specific diseases, including neurologic disease, has not been characterized. This study examined the relationship between expression of the MHC class I allele Mane-A*10 and development of lentiviral-induced central nervous system (CNS) disease using a well-characterized simian immunodeficiency (SIV)/pigtailed macaque model. The risk of developing CNS disease (SIV encephalitis) was 2.5 times higher for animals that did not express the MHC class I allele Mane-A*10 (P = 0.002; RR = 2.5). Animals expressing the Mane-A*10 allele had significantly lower amounts of activated macrophages, SIV RNA, and neuronal dysfunction in the CNS than Mane-A*10 negative animals (P<0.001). Mane-A*10 positive animals with the highest CNS viral burdens contained SIV gag escape mutants at the Mane-A*10-restricted KP9 epitope in the CNS whereas wild type KP9 sequences dominated in the brain of Mane-A*10 negative animals with comparable CNS viral burdens. These concordant findings demonstrate that particular MHC class I alleles play major neuroprotective roles in lentiviral-induced CNS disease

    The influence of different anticoagulants and sample preparation methods on measurement of mCD14 on bovine monocytes and polymorphonuclear neutrophil leukocytes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Membrane-CD14 (mCD14) is expressed on the surface of monocytes, macrophages and polymorphonuclear neutrophil leukocytes (PMN). mCD14 acts as a co-receptor along with Toll like receptor 4 (TLR 4) and MD-2 for the detection of lipopolysaccharide (LPS). However, studies using different sample preparation methods and anticoagulants have reported different levels of mCD14 on the surface of monocytes and neutrophils. In this study, the influence of various anticoagulants and processing methods on measurement of mCD14 on monocytes and neutrophils was examined.</p> <p>Results</p> <p>Whole blood samples were collected in vacutainer tubes containing either sodium heparin (HEPARIN), ethylenediaminetetraacetic acid (EDTA) or sodium citrate (CITRATE). mCD14 on neutrophils and monocytes in whole blood samples or isolated cells was measured by the method of flow cytometry using fluorescein isothiocyanate (FITC)-labeled monoclonal antibody. There was a significant difference (<it>p </it>< 0.05) in the mean channel fluorescence intensity (MFI) of mCD14 on neutrophils in whole blood samples anticoagulated with HEPARIN (MFI = 64.77) in comparison with those in whole blood samples anticoagulated with either EDTA (MFI = 38.25) or CITRATE (MFI = 43.7). The MFI of mCD14 on monocytes in whole blood samples anticoagulted with HEPARIN (MFI = 206.90) was significantly higher than the MFI in whole blood samples anticoagulated with EDTA (MFI = 149.37) but similar to that with CITRATE (MFI = 162.55). There was no significant difference in the percentage of whole blood neutrophils or monocytes expressing mCD14 irrespective of type of anticoagulant used. However, MFI of mCD14 on monocytes was about 3.2-folds (HEPARIN), 3.9-folds (EDTA) or 3.7 folds (CITRATE) higher than those on neutrophils. Furthermore, there was no significant difference in mCD14 levels between unprocessed whole blood monocytes and monocytes in peripheral blood mononuclear cell preparation. Conversely, a highly significant difference was observed in mCD14 between unprocessed whole blood neutrophils and isolated neutrophils (<it>p </it>< 0.05).</p> <p>Conclusion</p> <p>From these results, it is suggested that sodium heparin should be the preferred anticoagulant for use in the reliable quantification of the surface expression of mCD14. Furthermore, measurement of mCD14 is best carried out in whole blood samples, both for neutrophils and monocytes.</p

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Differential Expression of CD163 on Monocyte Subsets in Healthy and HIV-1 Infected Individuals

    Get PDF
    CD163, a haptoglobin-hemoglobin (Hp-Hb) scavenger receptor, expressed by monocytes and macrophages, is important in resolution of inflammation. Age-related non-AIDS co-morbidities in HIV-infected individuals, particularly dementia and cardiovascular disease, result in part from effects of HIV-1 infection on monocyte and macrophage biology. CD163 co-expression on CD14+CD16++ monocytes has been proposed as a useful biomarker for HIV-1 disease progression and the presence of HIV associated dementia. Here we investigated CD163 expression on monocyte subsets ex vivo, on cultured macrophages, and soluble in plasma, in the setting of HIV-1 infection. Whole blood immunophenotyping revealed CD163 expression on CD14++CD16- monocytes but not on CD14+CD16++ monocytes (P = 0.004), supported by CD163 mRNA levels. Incubation with M-CSF induced CD163 protein expression on CD14+CD16++ monocytes to the same extent as CD14++CD16− monocytes. CD163 expression on CD14++CD16+ monocytes from HIV-infected subjects was significantly higher than from uninfected individuals, with a trend towards increased expression on CD14++CD16− monocytes (P = 0.019 and 0.069 respectively), which is accounted for by HIV-1 therapy including protease inhibitors. Shedding of CD163 was shown to predominantly occur from the CD14++CD16− subset after Ficoll isolation and LPS stimulation. Soluble CD163 concentration in plasma from HIV-1 infected donors was similar to HIV-1 uninfected donors. Monocyte CD163 expression in HIV-1 infected patients showed a complicated relationship with classical measures of disease progression. Our findings clarify technical issues regarding CD163 expression on monocyte subsets and further elucidates its role in HIV-associated inflammation by demonstrating that CD163 is readily lost from CD14++CD16− monocytes and induced in pro-inflammatory CD14+CD16++ monocytes by M-CSF. Our data show that all monocyte subsets are potentially capable of differentiating into CD163-expressing anti-inflammatory macrophages given appropriate stimuli. Levels of CD163 expression on monocytes may be a potential biomarker reflecting efforts by the immune system to resolve immune activation and inflammation in HIV-infected individuals

    Beryllium increases the CD14<sup>dim</sup>CD16+ subset in the lung of chronic beryllium disease

    Get PDF
    CD14dimCD16+ and CD14brightCD16+ cells, which compose a minor population of monocytes in human peripheral blood mononuclear cells (PBMC), have been implicated in several inflammatory diseases. The aim of this study was to investigate whether this phenotype was present as a subset of lung infiltrative alveolar macrophages (AMs) in the granulomatous lung disease, chronic beryllium disease (CBD). The monocytes subsets was determined from PBMC cells and bronchoalveolar lavage (BAL) cells from CBD, beryllium sensitized Non-smoker (BeS-NS) and healthy subjects (HS) using flow cytometry. The impact of smoking on the AMs cell phenotype was determined by using BAL cells from BeS smokers (BeS-S). In comparison with the other monocyte subpopulations, CD14dimCD16+ cells were at decreased frequency in PBMCs of both BeS-NS and CBD and showed higher HLA-DR expression, compared to HS. The AMs from CBD and BeS-NS demonstrated a CD14dimCD16+phenotype, while CD14brightCD16+ cells were found at increased frequency in AMs of BeS, compared to HS. Fresh AMs from BeS-NS and CBD demonstrated significantly greater CD16, CD40, CD86 and HLA-DR than HS and BeS-S. The expression of CD16 on AMs from both CBD and BeS-NS was downregulated significantly after 10μM BeSO4 stimulation. The phagocytic activity of AMs decreased after 10μM BeSO4 treatment in both BeS-NS and CBD, although was altered or reduced in HS and BeS-S. These results suggest that Be increases the CD14dimCD16+ subsets in the lung of CBD subjects. We speculate that Be-stimulates the compartmentalization of a more mature CD16+ macrophage phenotype and that in turn these macrophages are a source of Th1 cytokines and chemokines that perpetuate the Be immune response in CBD. The protective effect of cigarette smoking in BeS-S may be due to the low expression of co-stimulatory markers on AMs from smokers as well as the decreased phagocytic function

    Treatment with IL-7 Prevents the Decline of Circulating CD4+ T Cells during the Acute Phase of SIV Infection in Rhesus Macaques

    Get PDF
    Although treatment with interleukin-7 (IL-7) was shown to transiently expand the naïve and memory T-cell pools in patients with chronic HIV-1 infection receiving antiretroviral therapy (ART), it is uncertain whether a full immunologic reconstitution can be achieved. Moreover, the effects of IL-7 have never been evaluated during acute HIV-1 (or SIV) infection, a critical phase of the disease in which the most dramatic depletion of CD4+ T cells is believed to occur. In the present study, recombinant, fully glycosylated simian IL-7 (50 µg/kg, s.c., once weekly for 7 weeks) was administered to 6 rhesus macaques throughout the acute phase of infection with a pathogenic SIV strain (mac251); 6 animals were infected at the same time and served as untreated controls. Treatment with IL-7 did not cause clinically detectable side effects and, despite the absence of concomitant ART, did not induce significant increases in the levels of SIV replication except at the earliest time point tested (day 4 post-infection). Strikingly, animals treated with IL-7 were protected from the dramatic decline of circulating naïve and memory CD4+ T cells that occurred in untreated animals. Treatment with IL-7 induced only transient T-cell proliferation, but it was associated with sustained increase in the expression of the anti-apoptotic protein Bcl-2 on both CD4+ and CD8+ T cells, persistent expansion of all circulating CD8+ T-cell subsets, and development of earlier and stronger SIV Tat-specific T-cell responses. However, the beneficial effects of IL-7 were not sustained after treatment interruption. These data demonstrate that IL-7 administration is effective in protecting the CD4+ T-cell pool during the acute phase of SIV infection in macaques, providing a rationale for the clinical evaluation of this cytokine in patients with acute HIV-1 infection

    Wolbachia Infection Decreased the Resistance of Drosophila to Lead

    Get PDF
    Background: The heavy metal lead has been shown to be associated with a genotoxic risk. Drosophila melanogaster is a model organism commonly utilized in genetic toxicology testing. The endosymbionts — Wolbachia are now very common in both wild populations and laboratory stocks of Drosophila. Wolbachia may induce resistance to pathogenic viruses, filarial nematodes and Plasmodium in fruit fly and mosquito hosts. However the effect of Wolbachia infection on the resistance of their hosts to heavy metal is unknown. Methodology/Principal Findings: Manipulating the lead content in the diet of Drosophila melanogaster, we found that lead consumption had no different effects on developmental time between Wolbachia-infected (Dmel wMel) and –uninfected (Dmel T) flies. While in Pb-contaminated medium, significantly reduced amount of pupae and adults of Dmel wMel were emerged, and Dmel wMel adults had significantly shorter longevity than that of Dmel T flies. Lead infusion in diet resulted in significantly decreased superoxide dismutase (SOD) activity in Dmel T flies (P,0.05), but not in Dmel wMel flies. Correspondingly, lead cultures induced a 10.8 fold increase in malonaldehyde (MDA) contents in Dmel T larvae (P,0.05). While in Dmel wMel larvae, it resulted in only a 1.3 fold increase. By quantitative RT-PCR, we showed that lead infused medium caused significantly increased expression level of relish and CecA2 genes in Dmel T flies (P,0.01). Lead cultures did not change dramatically the expression of these genes in Dmel wMel flies
    corecore