34 research outputs found
A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants.
This is the author accepted manuscript. The final version is available from Nature Publishing Group via http://dx.doi.org/10.1038/ng.3448Advanced age-related macular degeneration (AMD) is the leading cause of blindness in the elderly, with limited therapeutic options. Here we report on a study of >12 million variants, including 163,714 directly genotyped, mostly rare, protein-altering variants. Analyzing 16,144 patients and 17,832 controls, we identify 52 independently associated common and rare variants (P < 5 × 10(-8)) distributed across 34 loci. Although wet and dry AMD subtypes exhibit predominantly shared genetics, we identify the first genetic association signal specific to wet AMD, near MMP9 (difference P value = 4.1 × 10(-10)). Very rare coding variants (frequency <0.1%) in CFH, CFI and TIMP3 suggest causal roles for these genes, as does a splice variant in SLC16A8. Our results support the hypothesis that rare coding variants can pinpoint causal genes within known genetic loci and illustrate that applying the approach systematically to detect new loci requires extremely large sample sizes.We thank all participants of all the studies included for enabling this research by their participation in these studies. Computer resources for this project have been provided by the high-performance computing centers of the University of Michigan and the University of Regensburg. Group-specific acknowledgments can be found in the Supplementary Note. The Center for Inherited Diseases Research (CIDR) Program contract number is HHSN268201200008I. This and the main consortium work were predominantly funded by 1X01HG006934-01 to G.R.A. and R01 EY022310 to J.L.H
Development of the Fetoplacental Vascular Tree in Mice During Normal and Growth Restricted Pregnancies
The geometry of an organ’s vascular system determines the blood flow distribution to tissues for exchange of gas and nutrients by determining its vascular resistance. The importance of vascular geometry is evident in the placenta, where insufficient fetoplacental vascularity elevates vascular resistance thereby impairing perfusion, leading to one of the most common and severe pregnancy complications, intrauterine growth restriction (IUGR). The mouse is becoming a widely used model for human placental development due to the increasing availability of mouse models thought to have a placental defect. Vascular geometry can now be imaged and quantified using
micro-computed tomography (micro-CT) and results used to estimate resistance to blood flow. This thesis first describes the implementation of contrast agent perfusion and micro-CT imaging of the mouse fetoplacental vasculature throughout late gestation. Application of a vascular segmentation technique is then described and evaluated for quantification of the arterial
fetoplacental tree. Normal fetoplacental vascular development in late gestation is described for two common mouse strains, CD1 and C57Bl6 (B6). In B6 placentas, both late gestational capillary growth and thinning of the interhaemal membrane were blunted relative to CD1. Analysis of CD1 and B6 tree geometry revealed a constant number of arterial segments throughout late gestation in both strains but expansion of arterial diameters in B6 only, resulting in decreased B6 arterial resistance and shear stress in late gestation. Strain dependence shows
the importance of genetics in fetoplacental vascular development. Quantification of the arterial tree in a mouse model of maternal pre-pregnancy exposure to chemicals commonly found in cigarettes revealed an increase in vascular tortuousity and a reduced number of arteriole sized vessels. This led to an increase in vascular resistance and a predicted decrease in blood flow, which could contribute to the observed reduction in fetal weights. In future studies, the methods described herein can be used in phenotyping numerous mouse models which currently are suspected to have a placental vascular defect.Ph
Understanding Real-Time Fluorescence Signals from Bacteria and Wound Tissues Observed with the MolecuLight i:X<sup>TM</sup>
The persistent presence of pathogenic bacteria is one of the main obstacles to wound healing. Detection of wound bacteria relies on sampling methods, which delay confirmation by several days. However, a novel handheld fluorescence imaging device has recently enabled real-time detection of bacteria in wounds based on their intrinsic fluorescence characteristics, which differ from those of background tissues. This device illuminates the wound with violet (405 nm) light, causing tissues and bacteria to produce endogenous, characteristic fluorescence signals that are filtered and displayed on the device screen in real-time. The resulting images allow for rapid assessment and documentation of the presence, location, and extent of fluorescent bacteria at moderate-to-heavy loads. This information has been shown to assist in wound assessment and guide patient-specific treatment plans. However, proper image interpretation is essential to assessing this information. To properly identify regions of bacterial fluorescence, users must understand: (1) Fluorescence signals from tissues (e.g., wound tissues, tendon, bone) and fluids (e.g., blood, pus); (2) fluorescence signals from bacteria (red or cyan); (3) the rationale for varying hues of both tissue and bacterial fluorescence; (4) image artifacts that can occur; and (5) some potentially confounding signals from non-biological materials (e.g., fluorescent cleansing solutions). Therefore, this tutorial provides clinicians with a rationale for identifying common wound fluorescence characteristics. Clinical examples are intended to help clinicians with image interpretation—with a focus on image artifacts and potential confounders of image interpretation—and suggestions of how to overcome such challenges when imaging wounds in clinical practice
Hemodynamics Modify Collagen Deposition in the Early Embryonic Chicken Heart Outflow Tract
Blood flow is critical for normal cardiac development. Hemodynamic stimuli outside of normal ranges can lead to overt cardiac defects, but how early heart tissue remodels in response to altered hemodynamics is poorly understood. This study investigated changes in tissue collagen in response to hemodynamic overload in the chicken embryonic heart outflow tract (OFT) during tubular heart stages (HH18 to HH24, ~24 h). A suture tied around the OFT at HH18 was tightened to constrict the lumen for ~24 h (constriction range at HH24: 15–60%). Expression of fibril collagens I and III and fibril organizing collagens VI and XIV were quantified at the gene and protein levels via qPCR and quantitative immunofluorescence. Collagen I was slightly elevated upstream of the band and in the cushions in banded versus control OFTs. Changes in collagen III were not observed. Collagen VI deposition was elevated downstream of the band, but not overall. Collagen XIV deposition increased throughout the OFT, and strongly correlated to lumen constriction. Interestingly, organization of collagen I fibrils was observed for the tighter banded embryos in regions that also showed increase in collagen XIV deposition, suggesting a potentially key role for collagens I and XIV in the structural adaptation of embryonic heart tissue to hemodynamic overload
HIV antiretroviral exposure in pregnancy induces detrimental placenta vascular changes that are rescued by progesterone supplementation
Abstract Adverse birth outcomes are common in HIV-positive pregnant women receiving combination antiretroviral therapy (cART), especially when cART is initiated in early pregnancy. The mechanisms remain poorly understood. Using a mouse model we demonstrate that protease inhibitor based-cART exposure beginning on day 1 of pregnancy was associated with a pro-angiogenic/pro-branching shift in the placenta driven by lower Flt-1 levels and higher Gcm-1 expression. Micro-CT imaging revealed an increase in the number of arterioles in cART-treated placentas, which correlated with fetal growth restriction. Delaying initiation of cART, or supplementing cART-treated mice with progesterone, prevented the pro-angiogenic/pro-branching shift and the associated placenta vascular changes. In agreement with our mouse findings, we observed an increase in the number of terminal-villi capillaries in placentas from HIV-positive cART-exposed women compared to HIV-negative controls. Capillary number was inversely correlated to maternal progesterone levels. Our study provides evidence that cART exposure during pregnancy influences placenta vascular formation that may in turn contribute to fetal growth restriction. Our findings highlight the need for closer investigation of the placenta in HIV-positive pregnancies, particularly for pregnancies exposed to cART from conception, and suggest that progesterone supplementation could be investigated as a possible intervention to improve placenta function in HIV-positive pregnant women