65 research outputs found

    Rabies virus has more than one trick up its sleeve to manipulate the host defences

    Get PDF

    In vitro and in vivo evaluation of a single chain antibody fragment generated in planta with potent rabies neutralisation activity.

    Get PDF
    Rabies causes more than 60,000 human deaths annually in areas where the virus is endemic. Importantly, rabies is one of the few pathogens for which there is no treatment following the onset of clinical disease with the outcome of infection being death in almost 100% of cases. Whilst vaccination, and the combination of vaccine and rabies immunoglobulin treatment for post-exposure administration are available, no tools have been identified that can reduce or prevent rabies virus replication once clinical disease has initiated. The search for effective antiviral molecules to treat those that have already developed clinical disease associated with rabies virus infection is considered one of the most important goals in rabies research. The current study assesses a single chain antibody molecule (ScFv) based on a monoclonal antibody that potently neutralises rabies in vitro as a potential therapeutic candidate. The recombinant ScFv was generated in Nicotiana benthamiana by transient expression, and was chemically conjugated (ScFv/RVG) to a 29 amino acid peptide, specific for nicotinic acetylcholine receptor (nAchR) binding in the CNS. This conjugated molecule was able to bind nAchR in vitro and enter neuronal cells more efficiently than ScFv. The ability of the ScFv/RVG to neutralise virus in vivo was assessed using a staggered administration where the molecule was inoculated either four hours before, two days after or four days after infection. The ScFv/RVG conjugate was evaluated in direct comparison with HRIG and a potential antiviral molecule, Favipiravir (also known as T-705) to indicate whether there was greater bioavailability of the ScFv in the brains of treated mice. The study indicated that the approach taken with the ScFv/RVG conjugate may have utility in the design and implementation of novel tools targetting rabies virus infection in the brain

    Toll-Like Receptor 3 (TLR3) Plays a Major Role in the Formation of Rabies Virus Negri Bodies

    Get PDF
    Human neurons express the innate immune response receptor, Toll-like receptor 3 (TLR3). TLR3 levels are increased in pathological conditions such as brain virus infection. Here, we further investigated the production, cellular localisation, and function of neuronal TLR3 during neuronotropic rabies virus (RABV) infection in human neuronal cells. Following RABV infection, TLR3 is not only present in endosomes, as observed in the absence of infection, but also in detergent-resistant perinuclear inclusion bodies. As well as TLR3, these inclusion bodies contain the viral genome and viral proteins (N and P, but not G). The size and composition of inclusion bodies and the absence of a surrounding membrane, as shown by electron microscopy, suggest they correspond to the previously described Negri Bodies (NBs). NBs are not formed in the absence of TLR3, and TLR3−/− mice—in which brain tissue was less severely infected—had a better survival rate than WT mice. These observations demonstrate that TLR3 is a major molecule involved in the spatial arrangement of RABV–induced NBs and viral replication. This study shows how viruses can exploit cellular proteins and compartmentalisation for their own benefit

    La nucleocapside du virus rabique : une nouvelle cible pour la reponse immunitaire et pour la therapie

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Latent viral infections of the nervous system: Role of the host immune response.

    No full text
    Viruses that infect the nervous system may cause acute, chronic or latent infections. Despite the so-called immunoprivileged status of the nervous system, immunosurveillance plays an important role in the fate of viral infection of the brain. Herpes simplex virus 1 (HSV-1) persists in the nervous system for the life of the host with periodic stress induced reactivation that produces progeny viruses. Prevention of reactivation requires a complex interplay between virus neurons, and immune response. New evidence supports the view that CD8+T cells employing both lytic granule- and IFN-gamma-dependent effectors are essential in setting up and maintaining HSV-1 latency. HSV-1 infection of the nervous system can be seen as a parasitic invasion which leaves the individual at risk for subsequent reactivation and disease. The recent observation that herpes virus latency may confer protection against experimental bacterial infection suggests that unexpected symbiosis may exist between latent viruses and the infected nervous system of its host
    • …
    corecore