22 research outputs found

    Dysregulated RasGRP1 Responds to Cytokine Receptor Input in T Cell Leukemogenesis

    Get PDF
    Enhanced signaling by the small guanosine triphosphatase Ras is common in T cell acute lymphoblastic leukemia/lymphoma (T-ALL), but the underlying mechanisms are unclear. We identified the guanine nucleotide exchange factor RasGRP1 (Rasgrp1 in mice) as a Ras activator that contributes to leukemogenesis. We found increased RasGRP1 expression in many pediatric T-ALL patients, which is not observed in rare early T cell precursor T-ALL patients with KRAS and NRAS mutations, such as K-Ras[superscript G12D]. Leukemia screens in wild-type mice, but not in mice expressing the mutant K-Ras[superscript G12D] that encodes a constitutively active Ras, yielded frequent retroviral insertions that led to increased Rasgrp1 expression. Rasgrp1 and oncogenic K-Ras[superscript G12D] promoted T-ALL through distinct mechanisms. In K-Ras[superscript G12D] T-ALLs, enhanced Ras activation had to be uncoupled from cell cycle arrest to promote cell proliferation. In mouse T-ALL cells with increased Rasgrp1 expression, we found that Rasgrp1 contributed to a previously uncharacterized cytokine receptor–activated Ras pathway that stimulated the proliferation of T-ALL cells in vivo, which was accompanied by dynamic patterns of activation of effector kinases downstream of Ras in individual T-ALLs. Reduction of Rasgrp1 abundance reduced cytokine-stimulated Ras signaling and decreased the proliferation of T-ALL in vivo. The position of RasGRP1 downstream of cytokine receptors as well as the different clinical outcomes that we observed as a function of RasGRP1 abundance make RasGRP1 an attractive future stratification marker for T-ALL.National Institutes of Health (U.S.). Pioneer AwardNational Cancer Institute (U.S.). Physical Sciences-Oncology Center (U54CA143874)National Institutes of Health (U.S.). (P01 AI091580

    Impact of Venetoclax and Azacitidine in Treatment-Naïve Patients with Acute Myeloid Leukemia and IDH1/2 Mutations

    Get PDF
    partially_open16Purpose: To evaluate efficacy and safety of venetoclax + azacitidine among treatment-naïve patients with IDH1/2-mutant (mut) acute myeloid leukemia (AML). Patients and methods: Data were pooled from patients enrolled in a phase III study (NCT02993523) that compared patients treated with venetoclax + azacitidine or placebo + azacitidine and a prior phase Ib study (NCT02203773) where patients were treated with venetoclax + azacitidine. Enrolled patients were ineligible for intensive therapy due to age ≥75 years and/or comorbidities. Patients on venetoclax + azacitidine received venetoclax 400 mg orally (days 1-28) and azacitidine (75 mg/m2; days 1-7/28-day cycle). Results: In the biomarker-evaluable population, IDH1/2mut was detected in 81 (26%) and 28 (22%) patients in the venetoclax + azacitidine and azacitidine groups. Composite complete remission [CRc, complete remission (CR)+CR with incomplete hematologic recovery (CRi)] rates (venetoclax + azacitidine/azacitidine) among patients with IDH1/2mut were 79%/11%, median duration of remission (mDoR) was 29.5/9.5 months, and median overall survival (mOS) was 24.5/6.2 months. CRc rates among patients with IDH1/2 wild-type (WT) were 63%/31%, mDoR 17.5/10.3 months, and mOS 12.3/10.1 months. In patients with IDH1mut, CRc rates (venetoclax + azacitidine/azacitidine) were 66.7%/9.1% and mOS 15.2/2.2 months. In patients with IDH2mut, CRc rates were 86.0%/11.1% and mOS not reached (NR)/13.0 months. Patients with IDH1/2 WT AML treated with venetoclax + azacitidine with poor-risk cytogenetics had inferior outcomes compared with patients with IDH1/2mut, who had superior outcomes regardless of cytogenetic risk (mOS, IDH1/2mut: intermediate-risk, 24.5 months; poor-risk, NR; IDH1/2 WT: intermediate, 19.2 and poor, 7.4 months). There were no unexpected toxicities in the venetoclax + azacitidine group. Conclusions: Patients with IDH1/2mut who received venetoclax + azacitidine had high response rates, durable remissions, and significant OS; cytogenetic risk did not mitigate the favorable outcomes seen from this regimen for IDH1/2mut.partially_openembargoed_20230131Pollyea, Daniel A; DiNardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop MPollyea, Daniel A; Dinardo, Courtney D; Arellano, Martha L; Pigneux, Arnaud; Fiedler, Walter; Konopleva, Marina; Rizzieri, David A; Smith, B Douglas; Shinagawa, Atsushi; Lemoli, Roberto M; Dail, Monique; Duan, Yinghui; Chyla, Brenda; Potluri, Jalaja; Miller, Catherine L; Kantarjian, Hagop

    Oncogenic Kras initiates leukemia in hematopoietic stem cells.

    Get PDF
    How oncogenes modulate the self-renewal properties of cancer-initiating cells is incompletely understood. Activating KRAS and NRAS mutations are among the most common oncogenic lesions detected in human cancer, and occur in myeloproliferative disorders (MPDs) and leukemias. We investigated the effects of expressing oncogenic Kras(G12D) from its endogenous locus on the proliferation and tumor-initiating properties of murine hematopoietic stem and progenitor cells. MPD could be initiated by Kras(G12D) expression in a highly restricted population enriched for hematopoietic stem cells (HSCs), but not in common myeloid progenitors. Kras(G12D) HSCs demonstrated a marked in vivo competitive advantage over wild-type cells. Kras(G12D) expression also increased the fraction of proliferating HSCs and reduced the overall size of this compartment. Transplanted Kras(G12D) HSCs efficiently initiated acute T-lineage leukemia/lymphoma, which was associated with secondary Notch1 mutations in thymocytes. We conclude that MPD-initiating activity is restricted to the HSC compartment in Kras(G12D) mice, and that distinct self-renewing populations with cooperating mutations emerge during cancer progression

    Outcomes in Patients With Poor-risk Cytogenetics With or Without TP53 Mutations Treated With Venetoclax and Azacitidine

    No full text
    PurposeTo evaluate efficacy and safety of venetoclax + azacitidine in treatment-naïve patients with acute myeloid leukemia harboring poor-risk cytogenetics and TP53mut or TP53wt.Patients and methodsWe analyzed data from a phase III study (NCT02993523) comparing venetoclax (400 mg orally days 1-28) + azacitidine (75 mg/m2 days 1-7) or placebo + azacitidine, and from a phase Ib study (NCT02203773) of venetoclax + azacitidine. Patients were ineligible for intensive therapy. TP53 status was analyzed centrally; cytogenetic studies were performed locally.ResultsPatients (n = 127) with poor-risk cytogenetics receiving venetoclax + azacitidine (TP53wt = 50; TP53mut = 54) were compared with patients with poor-risk cytogenetics (n = 56) receiving azacitidine alone (TP53wt = 22; TP53mut = 18).For poor-risk cytogenetics + TP53wt patients, venetoclax + azacitidine versus azacitidine alone resulted in composite remission rates (CRc) of 70% versus 23%, median duration of remission (DoR) of 18.4 versus 8.5 months, and median overall survival (OS) of 23.4 versus 11.3 months, respectively. Outcomes with venetoclax + azacitidine were comparable with similarly treated patients with intermediate-risk cytogenetics and TP53wt.For poor-risk cytogenetics + TP53mut patients, venetoclax + azacitidine versus azacitidine alone resulted in CRc of 41% versus 17%, median DoR of 6.5 versus 6.7 months, and median OS of 5.2 versus 4.9 months, respectively.For poor-risk cytogenetics + TP53mut patients, predominant grade ≥3 adverse events (AE) for venetoclax + azacitidine versus azacitidine were febrile neutropenia (55%/39%), thrombocytopenia (28%/28%), neutropenia (26%/17%), anemia (13%/6%), and pneumonia (28%/33%). AEs were comparable between TP53mut and TP53wt patients.ConclusionsIn poor-risk cytogenetics + TP53mut patients, venetoclax + azacitidine improved remission rates but not DoR or OS compared with azacitidine alone. However, in poor-risk cytogenetics + TP53wt patients, venetoclax + azacitidine resulted in higher remission rates and longer DoR and OS than azacitidine alone, with outcomes comparable with similarly treated patients with intermediate-risk cytogenetics. Toxicities were similar in TP53mut and TP53wt patients. See related commentary by Green and Zeidner, p. 5235

    Cobimetinib alone and plus venetoclax with/without atezolizumab in patients with relapsed/refractory multiple myeloma

    No full text
    This phase IB/II trial evaluated safety and efficacy of cobimetinib alone and in novel combinations with veneto-clax with/without atezolizumab in patients with relapsed/refractory multiple myeloma. Forty-nine patients were enrolled. Cobimetinib alone and in combination with venetoclax with/without atezolizumab was determined to be safe and tolerable; anti-tumor activity was moderate overall but higher in patients with translocation t(11;14). Introduction: Mitogen-activated protein kinase pathway mutations are present in > 50% of patients with relapsed/refractory (R/R) multiple myeloma (MM). MEK inhibitors show limited single-agent activity in R/R MM; combi-nation with B-cell lymphoma-2 (BCL-2) and programmed death-ligand 1 inhibition may improve efficacy. This phase Ib/II trial (NCT03312530) evaluated safety and efficacy of cobimetinib (cobi) alone and in combination with veneto-clax (ven) with/without atezolizumab (atezo) in patients with R/R MM. Patients and Methods: Forty-nine patients were randomized 1:2:2 to cobi 60 mg/day on days 1-21 (n = 6), cobi 40 mg/day on days 1-21 + ven 800 mg/day on days 1-28 with/without atezo 840 mg on days 1 and 15 of 28-day cycles (cobi-ven, n = 22; cobi-ven-atezo, n = 21). Safety run-in cohorts evaluated cobi-ven and cobi-ven-atezo dose levels. Results: Any-grade common adverse events (AEs) with cobi, cobi-ven, and cobi-ven-atezo, respectively, included diarrhea (33.3%, 81.8%, 90.5%) and nausea (16.7%, 50.0%, 66.7%); common grade >= 3 AEs included anemia (0%, 22.7%, 23.8%), neutropenia (0%, 13.6%, 38.1%), and thrombocytopenia (0%, 18.2%, 23.8%). The overall response rate for all-comers was 0% (cobi), 27.3% (cobi-ven), and 28.6% (cobi-ven-atezo), and 0%, 50.0%, and 100%, respectively, in patients with t(11;14) + . Biomarker analysis demon-strated non-t(11;14) patient selection with NRAS /KRAS /BRAF mutation or high BCL-2/BCL-2-L1 ratio ( > 52% of the study population) could enrich for responders to the cobi-ven combination. Conclusions: Cobi-ven and cobi-ven-atezo demonstrated manageable safety with moderate activity in all-comers, and higher activity in patients with t(11;14) + MM, supporting a biomar ker-dr iven approach for ven in MM
    corecore