4 research outputs found

    Scedosporium apiospermum endopthalmitis treated early with intravitreous voriconazole results in recovery of vision

    Get PDF
    AIM: The purpose of this study is to report a case of endogenous endopthalmitis caused by Scedosporium apiospermum with a favorable outcome and review previously reported cases, their treatment regimens and outcomes. METHODS: An 83-year-old man with diabetes mellitus, no other immunocompromising risk factors, and a history of S. apiospermum endopthalmitis in the left eye developed endopthalmitis in the right eye. Within 72 h of presentation, he was treated with a pars plana vitrectomy and intravitreal voriconozole. RESULTS: Vitreous cultures confirmed S. apiospermum. The patient responded to treatment, with a favorable outcome and full recovery of vision. CONCLUSIONS: Recognition of S. apiospermum endopthalmitis and appropriate early intervention with pars plana vitrectomy and intravitreal voriconozole can lead to a favorable outcome with restoration of visual acuity

    The KCNQ1-KCNE2 K+ channel is required for adequate thyroid I- uptake

    Get PDF
    The KCNQ1 α subunit and the KCNE2 ÎČsubunit form a potassium channel in thyroid epithelial cells. Genetic disruption of KCNQ1-KCNE2 causes hypothyroidism in mice, resulting in cardiac hypertrophy, dwarfism, alopecia, and prenatal mortality. Here, we investigated the mechanistic requirement for KCNQ1-KCNE2 in thyroid hormone biosynthesis, utilizing whole-animal dynamic positron emission tomography. The KCNQ1-specific antagonist (-)-[3R,4S]- chromanol 293B (C293B) significantly impaired thyroid cell I- uptake, which is mediated by the Na+/I- symporter (NIS), in vivo (dSUV/dt: vehicle, 0.028±0.004 min-1; 10 mg/kg C293B, 0.009±0.006 min-1) and in vitro (EC50: 99±10 ÎŒM C293B). Na+-dependent nicotinate uptake by SMCT, however, was unaffected. Kcne2 deletion did not alter the balance of free vs. thyroglobulin-bound I- in the thyroid (distinguished using ClO 4-, a competitive inhibitor of NIS), indicating that KCNQ1-KCNE2 is not required for Duox/TPO-mediated I- organification. However, Kcne2 deletion doubled the rate of free I- efflux from the thyroid following ClO4- injection, a NIS-independent process. Thus, KCNQ1-KCNE2 is necessary for adequate thyroid cell I- uptake, the most likely explanation being that it is prerequisite for adequate NIS activity. © FASEB.Fil: Purtell, Kerry. Weill Cornell Medical College; Estados UnidosFil: Paroder-Belenitsky, Monika. Yeshiva University; Estados UnidosFil: Reyna-Neyra, Andrea. Yeshiva University; Estados UnidosFil: Nicola, Juan Pablo. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico CĂłrdoba. Centro de Investigaciones en BioquĂ­mica ClĂ­nica e InmunologĂ­a; Argentina. University of Yale; Estados UnidosFil: Koba, Wade. Yeshiva University; Estados UnidosFil: Fine, Eugene. Yeshiva University; Estados UnidosFil: Carrasco, Nancy. Yeshiva University; Estados Unidos. University of Yale; Estados UnidosFil: Abbott, Geoffrey W.. Weill Cornell Medical College; Estados Unido
    corecore