40 research outputs found
Carriers of ADAMTS13 Rare Variants Are at High Risk of Life-Threatening COVID-19
Thrombosis of small and large vessels is reported as a key player in COVID-19 severity. However, host genetic determinants of this susceptibility are still unclear. Congenital Thrombotic Thrombocytopenic Purpura is a severe autosomal recessive disorder characterized by uncleaved ultra-large vWF and thrombotic microangiopathy, frequently triggered by infections. Carriers are reported to be asymptomatic. Exome analysis of about 3000 SARS-CoV-2 infected subjects of different severities, belonging to the GEN-COVID cohort, revealed the specific role of vWF cleaving enzyme ADAMTS13 (A disintegrin-like and metalloprotease with thrombospondin type 1 motif, 13). We report here that ultra-rare variants in a heterozygous state lead to a rare form of COVID-19 characterized by hyper-inflammation signs, which segregates in families as an autosomal dominant disorder conditioned by SARS-CoV-2 infection, sex, and age. This has clinical relevance due to the availability of drugs such as Caplacizumab, which inhibits vWF-platelet interaction, and Crizanlizumab, which, by inhibiting P-selectin binding to its ligands, prevents leukocyte recruitment and platelet aggregation at the site of vascular damage
Gain- and Loss-of-Function CFTR Alleles Are Associated with COVID-19 Clinical Outcomes
Carriers of single pathogenic variants of the CFTR (cystic fibrosis transmembrane conductance regulator) gene have a higher risk of severe COVID-19 and 14-day death. The machine learning post-Mendelian model pinpointed CFTR as a bidirectional modulator of COVID-19 outcomes. Here, we demonstrate that the rare complex allele [G576V;R668C] is associated with a milder disease via a gain-of-function mechanism. Conversely, CFTR ultra-rare alleles with reduced function are associated with disease severity either alone (dominant disorder) or with another hypomorphic allele in the second chromosome (recessive disorder) with a global residual CFTR activity between 50 to 91%. Furthermore, we characterized novel CFTR complex alleles, including [A238V;F508del], [R74W;D1270N;V201M], [I1027T;F508del], [I506V;D1168G], and simple alleles, including R347C, F1052V, Y625N, I328V, K68E, A309D, A252T, G542*, V562I, R1066H, I506V, I807M, which lead to a reduced CFTR function and thus, to more severe COVID-19. In conclusion, CFTR genetic analysis is an important tool in identifying patients at risk of severe COVID-19
A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death
: The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 Ă 10-8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 Ă 10-8). A total of 113 variants were associated with survival at P-value < 1.0 Ă 10-5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways
An explainable model of host genetic interactions linked to COVID-19 severity
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as "Respiratory or thoracic disease", supporting their link with COVID-19 severity outcome.A multifaceted computational strategy identifies 16 genetic variants contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing dataset of a cohort of Italian patients
Oral Abstracts 7: RA ClinicalO37.âLong-Term Outcomes of Early RA Patients Initiated with Adalimumab Plus Methotrexate Compared with Methotrexate Alone Following a Targeted Treatment Approach
Background: This analysis assessed, on a group level, whether there is a long-term advantage for early RA patients treated with adalimumab (ADA) + MTX vs those initially treated with placebo (PBO) + MTX who either responded to therapy or added ADA following inadequate response (IR). Methods: OPTIMA was a 78- week, randomized, controlled trial of ADA + MTX vs PBO + MTX in MTX-naĂŻve early (<1 year) RA patients. Therapy was adjusted at week 26: ADA + MTX-responders (R) who achieved DAS28 (CRP) <3.2 at weeks 22 and 26 (Period 1, P1) were re-randomized to withdraw or continue ADA and PBO + MTX-R continued randomized therapy for 52 weeks (P2); IR-patients received open-label (OL) ADA + MTX during P2. This post hoc analysis evaluated the proportion of patients at week 78 with DAS28 (CRP) <3.2, HAQ-DI <0.5, and/or ÎmTSS â¤0.5 by initial treatment. To account for patients who withdrew ADA during P2, an equivalent proportion of R was imputed from ADA + MTX-R patients. Results: At week 26, significantly more patients had low disease activity, normal function, and/or no radiographic progression with ADA + MTX vs PBO + MTX (Table 1). Differences in clinical and functional outcomes disappeared following additional treatment, when PBO + MTX-IR (n = 348/460) switched to OL ADA + MTX. Addition of OL ADA slowed radiographic progression, but more patients who received ADA + MTX from baseline had no radiographic progression at week 78 than patients who received initial PBO + MTX. Conclusions: Early RA patients treated with PBO + MTX achieved comparable long-term clinical and functional outcomes on a group level as those who began ADA + MTX, but only when therapy was optimized by the addition of ADA in PBO + MTX-IR. Still, ADA + MTX therapy conferred a radiographic benefit although the difference did not appear to translate to an additional functional benefit. Disclosures: P.E., AbbVie, Merck, Pfizer, UCB, Roche, BMSâProvided Expert Advice, Undertaken Trials, AbbVieâAbbVie sponsored the study, contributed to its design, and participated in the collection, analysis, and interpretation of the data, and in the writing, reviewing, and approval of the final version. R.F., AbbVie, Pfizer, Merck, Roche, UCB, Celgene, Amgen, AstraZeneca, BMS, Janssen, Lilly, NovartisâResearch Grants, Consultation Fees. S.F., AbbVieâEmployee, Stocks. A.K., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, Pfizer, Roche, UCBâResearch Grants, Consultation Fees. H.K., AbbVieâEmployee, Stocks. S.R., AbbVieâEmployee, Stocks. J.S., AbbVie, Amgen, AstraZeneca, BMS, Celgene, Centocor-Janssen, GlaxoSmithKline, Lilly, Pfizer (Wyeth), MSD (Schering-Plough), Novo-Nordisk, Roche, Sandoz, UCBâResearch Grants, Consultation Fees. R.V., AbbVie, BMS, GlaxoSmithKline, Human Genome Sciences, Merck, Pfizer, Roche, UCB PharmaâConsultation Fees, Research Support. Table 1.Week 78 clinical, functional, and radiographic outcomes in patients who received continued ADA + MTX vs those who continued PBO + MTX or added open-label ADA following an inadequate response ADA + MTX, n/N (%)a PBO + MTX, n/N (%)b Outcome Week 26 Week 52 Week 78 Week 26 Week 52 Week 78 DAS28 (CRP) <3.2 246/466 (53) 304/465 (65) 303/465 (65) 139/460 (30)*** 284/460 (62) 300/460 (65) HAQ-DI <0.5 211/466 (45) 220/466 (47) 224/466 (48) 150/460 (33)*** 203/460 (44) 208/460 (45) ÎmTSS â¤0.5 402/462 (87) 379/445 (86) 382/443 (86) 330/459 (72)*** 318/440 (72)*** 318/440 (72)*** DAS28 (CRP) <3.2 + ÎmTSS â¤0.5 216/462 (47) 260/443 (59) 266/443 (60) 112/459 (24)*** 196/440 (45) 211/440 (48)*** DAS28 (CRP) <3.2 + HAQ-DI <0.5 + ÎmTSS â¤0.5 146/462 (32) 168/443 (38) 174/443 (39) 82/459 (18)*** 120/440 (27)*** 135/440 (31)** aIncludes patients from the ADA Continuation (n = 105) and OL ADA Carry On (n = 259) arms, as well as the proportional equivalent number of responders from the ADA Withdrawal arm (n = 102). bIncludes patients from the MTX Continuation (n = 112) and Rescue ADA (n = 348) arms. Last observation carried forward: DAS28 (CRP) and HAQ-DI; Multiple imputations: ÎmTSS. ***P < 0.001 and **iP < 0.01, respectively, for differences between initial treatments from chi-squar
An explainable model of host genetic interactions linked to COVID-19 severity
We employed a multifaceted computational strategy to identify the genetic factors contributing to increased risk of severe COVID-19 infection from a Whole Exome Sequencing (WES) dataset of a cohort of 2000 Italian patients. We coupled a stratified k-fold screening, to rank variants more associated with severity, with the training of multiple supervised classifiers, to predict severity based on screened features. Feature importance analysis from tree-based models allowed us to identify 16 variants with the highest support which, together with age and gender covariates, were found to be most predictive of COVID-19 severity. When tested on a follow-up cohort, our ensemble of models predicted severity with high accuracy (ACC = 81.88%; AUCROC = 96%; MCC = 61.55%). Our model recapitulated a vast literature of emerging molecular mechanisms and genetic factors linked to COVID-19 response and extends previous landmark Genome-Wide Association Studies (GWAS). It revealed a network of interplaying genetic signatures converging on established immune system and inflammatory processes linked to viral infection response. It also identified additional processes cross-talking with immune pathways, such as GPCR signaling, which might offer additional opportunities for therapeutic intervention and patient stratification. Publicly available PheWAS datasets revealed that several variants were significantly associated with phenotypic traits such as âRespiratory or thoracic diseaseâ, supporting their link with COVID-19 severity outcome
Host genetics and COVID-19 severity: increasing the accuracy of latest severity scores by Boolean quantum features
The impact of common and rare variants in COVID-19 host genetics has been widely studied. In particular, in Fallerini et al. (Human genetics, 2022, 141, 147â173), common and rare variants were used to define an interpretable machine learning model for predicting COVID-19 severity. First, variants were converted into sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. After that, the Boolean features, selected by these logistic models, were combined into an Integrated PolyGenic Score (IPGS), which offers a very simple description of the contribution of host genetics in COVID-19 severity. IPGS leads to an accuracy of 55%â60% on different cohorts, and, after a logistic regression with both IPGS and age as inputs, it leads to an accuracy of 75%. The goal of this paper is to improve the previous results, using not only the most informative Boolean features with respect to the genetic bases of severity but also the information on host organs involved in the disease. In this study, we generalize the IPGS adding a statistical weight for each organ, through the transformation of Boolean features into âBoolean quantum features,â inspired by quantum mechanics. The organ coefficients were set via the application of the genetic algorithm PyGAD, and, after that, we defined two new integrated polygenic scores ((Formula presented.) and (Formula presented.)). By applying a logistic regression with both IPGS, ((Formula presented.) (or indifferently (Formula presented.)) and age as inputs, we reached an accuracy of 84%â86%, thus improving the results previously shown in Fallerini et al. (Human genetics, 2022, 141, 147â173) by a factor of 10%
Ultra-rare RTEL1 gene variants associate with acute severity of COVID-19 and evolution to pulmonary fibrosis as a specific long COVID disorder
Background: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a novel coronavirus that caused an ongoing pandemic of a pathology termed Coronavirus Disease 19 (COVID-19). Several studies reported that both COVID-19 and RTEL1 variants are associated with shorter telomere length, but a direct association between the two is not generally acknowledged. Here we demonstrate that up to 8.6% of severe COVID-19 patients bear RTEL1 ultra-rare variants, and show how this subgroup can be recognized. Methods: A cohort of 2246 SARS-CoV-2-positive subjects, collected within the GEN-COVID Multicenter study, was used in this work. Whole exome sequencing analysis was performed using the NovaSeq6000 System, and machine learning methods were used for candidate gene selection of severity. A nested study, comparing severely affected patients bearing or not variants in the selected gene, was used for the characterisation of specific clinical features connected to variants in both acute and post-acute phases. Results: Our GEN-COVID cohort revealed a total of 151 patients carrying at least one RTEL1 ultra-rare variant, which was selected as a specific acute severity feature. From a clinical point of view, these patients showed higher liver function indices, as well as increased CRP and inflammatory markers, such as IL-6. Moreover, compared to control subjects, they present autoimmune disorders more frequently. Finally, their decreased diffusion lung capacity for carbon monoxide after six months of COVID-19 suggests that RTEL1 variants can contribute to the development of SARS-CoV-2-elicited lung fibrosis. Conclusion: RTEL1 ultra-rare variants can be considered as a predictive marker of COVID-19 severity, as well as a marker of pathological evolution in pulmonary fibrosis in the post-COVID phase. This notion can be used for a rapid screening in hospitalized infected people, for vaccine prioritization, and appropriate follow-up assessment for subjects at risk. Trial Registration NCT04549831 (www.clinicaltrial.org
A genome-wide association study for survival from a multi-centre European study identified variants associated with COVID-19 risk of death
The clinical manifestations of SARS-CoV-2 infection vary widely among patients, from asymptomatic to life-threatening. Host genetics is one of the factors that contributes to this variability as previously reported by the COVID-19 Host Genetics Initiative (HGI), which identified sixteen loci associated with COVID-19 severity. Herein, we investigated the genetic determinants of COVID-19 mortality, by performing a case-only genome-wide survival analysis, 60 days after infection, of 3904 COVID-19 patients from the GEN-COVID and other European series (EGAS00001005304 study of the COVID-19 HGI). Using imputed genotype data, we carried out a survival analysis using the Cox model adjusted for age, age2, sex, series, time of infection, and the first ten principal components. We observed a genome-wide significant (P-value < 5.0 Ă 10â8) association of the rs117011822 variant, on chromosome 11, of rs7208524 on chromosome 17, approaching the genome-wide threshold (P-value = 5.19 Ă 10â8). A total of 113 variants were associated with survival at P-value < 1.0 Ă 10â5 and most of them regulated the expression of genes involved in immune response (e.g., CD300 and KLR genes), or in lung repair and function (e.g., FGF19 and CDH13). Overall, our results suggest that germline variants may modulate COVID-19 risk of death, possibly through the regulation of gene expression in immune response and lung function pathways
Pathogen-sugar interactions revealed by universal saturation transfer analysis
Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an âend-onâ manner. uSTA-guided modeling and a high-resolution cryoâelectron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis