8 research outputs found

    Physical and functional interaction of the Werner syndrome protein with poly-ADP ribosyl transferase

    No full text
    Werner’s syndrome is a rare disease of premature ageing. The WRN gene product defective in this disorder belongs to the RecQ helicase family and is thought to be involved in DNA metabolism. Another protein, which plays an important role in both DNA replication and repair, is the poly-ADP ribosyl transferase. Here we demonstrate an interaction of these two proteins resulting in ADP-ribosylation of the WRN protein. These results imply that WRN is involved in DNA replication and in DNA repair

    Characterization of recombinant human nicotinamide mononucleotide adenylyl transferase (NMNAT), a nuclear enzyme essential for NAD synthesis

    Get PDF
    AbstractNicotinamide mononucleotide adenylyl transferase (NMNAT) is an essential enzyme in all organisms, because it catalyzes a key step of NAD synthesis. However, little is known about the structure and regulation of this enzyme. In this study we established the primary structure of human NMNAT. The human sequence represents the first report of the primary structure of this enzyme for an organism higher than yeast. The enzyme was purified from human placenta and internal peptide sequences determined. Analysis of human DNA sequence data then permitted the cloning of a cDNA encoding this enzyme. Recombinant NMNAT exhibited catalytic properties similar to the originally purified enzyme. Human NMNAT (molecular weight 31 932) consists of 279 amino acids and exhibits substantial structural differences to the enzymes from lower organisms. A putative nuclear localization signal was confirmed by immunofluorescence studies. NMNAT strongly inhibited recombinant human poly(ADP-ribose) polymerase 1, however, NMNAT was not modified by poly(ADP-ribose). NMNAT appears to be a substrate of nuclear kinases and contains at least three potential phosphorylation sites. Endogenous and recombinant NMNAT were phosphorylated in nuclear extracts in the presence of [γ-32P]ATP. We propose that NMNAT’s activity or interaction with nuclear proteins are likely to be modulated by phosphorylation
    corecore