3 research outputs found
TreeSketchNet: From Sketch To 3D Tree Parameters Generation
3D modeling of non-linear objects from stylized sketches is a challenge even
for experts in Computer Graphics (CG). The extrapolation of objects parameters
from a stylized sketch is a very complex and cumbersome task. In the present
study, we propose a broker system that mediates between the modeler and the 3D
modelling software and can transform a stylized sketch of a tree into a
complete 3D model. The input sketches do not need to be accurate or detailed,
and only need to represent a rudimentary outline of the tree that the modeler
wishes to 3D-model. Our approach is based on a well-defined Deep Neural Network
(DNN) architecture, we called TreeSketchNet (TSN), based on convolutions and
able to generate Weber and Penn parameters that can be interpreted by the
modelling software to generate a 3D model of a tree starting from a simple
sketch. The training dataset consists of Synthetically-Generated
\revision{(SG)} sketches that are associated with Weber-Penn parameters
generated by a dedicated Blender modelling software add-on. The accuracy of the
proposed method is demonstrated by testing the TSN with both synthetic and
hand-made sketches. Finally, we provide a qualitative analysis of our results,
by evaluating the coherence of the predicted parameters with several
distinguishing features
Vision-enhanced Peg-in-Hole for automotive body parts using semantic image segmentation and object detection
Artificial Intelligence (AI) is an enabling technology in the context of Industry 4.0. In particular, the automotive sector is among those who can benefit most of the use of AI in conjunction with advanced vision techniques. The scope of this work is to integrate deep learning algorithms in an industrial scenario involving a robotic Peg-in-Hole task. More in detail, we focus on a scenario where a human operator manually positions a carbon fiber automotive part in the workspace of a 7 Degrees of Freedom (DOF) manipulator. To cope with the uncertainty on the relative position between the robot and the workpiece, we adopt a three stage strategy. The first stage concerns the Three-Dimensional (3D) reconstruction of the workpiece using a registration algorithm based on the Iterative Closest Point (ICP) paradigm. Such a procedure is integrated with a semantic image segmentation neural network, which is in charge of removing the background of the scene to improve the registration. The adoption of such network allows to reduce the registration time of about 28.8%. In the second stage, the reconstructed surface is compared with a Computer Aided Design (CAD) model of the workpiece to locate the holes and their axes. In this stage, the adoption of a Convolutional Neural Network (CNN) allows to improve the holes’ position estimation of about 57.3%. The third stage concerns the insertion of the peg by implementing a search phase to handle the remaining estimation errors. Also in this case, the use of the CNN reduces the search phase duration of about 71.3%. Quantitative experiments, including a comparison with a previous approach without both the segmentation network and the CNN, have been conducted in a realistic scenario. The results show the effectiveness of the proposed approach and how the integration of AI techniques improves the success rate from 84.5% to 99.0%
The tale of TILs in breast cancer: A report from The International Immuno-Oncology Biomarker Working Group
International audienceAbstract The advent of immune-checkpoint inhibitors (ICI) in modern oncology has significantly improved survival in several cancer settings. A subgroup of women with breast cancer (BC) has immunogenic infiltration of lymphocytes with expression of programmed death-ligand 1 (PD-L1). These patients may potentially benefit from ICI targeting the programmed death 1 (PD-1)/PD-L1 signaling axis. The use of tumor-infiltrating lymphocytes (TILs) as predictive and prognostic biomarkers has been under intense examination. Emerging data suggest that TILs are associated with response to both cytotoxic treatments and immunotherapy, particularly for patients with triple-negative BC. In this review from The International Immuno-Oncology Biomarker Working Group , we discuss (a) the biological understanding of TILs, (b) their analytical and clinical validity and efforts toward the clinical utility in BC, and (c) the current status of PD-L1 and TIL testing across different continents, including experiences from low-to-middle-income countries, incorporating also the view of a patient advocate. This information will help set the stage for future approaches to optimize the understanding and clinical utilization of TIL analysis in patients with BC