22 research outputs found

    Soleus H-Reflex Inhibition Decreases During 30 s Static Stretching of Plantar Flexors, Showing Two Recovery Steps

    Get PDF
    During the period when the ankle joint is kept in a dorsiflexed position, the soleus (SOL) H-reflex is inhibited. The nature of this inhibition is not fully understood. One hypothesis is that the decrease in spinal excitability could be attributed to post-activation depression of muscle spindle afferents due to their higher firing rate during the stretch-and-hold procedure. As the static stretching position is maintained though, a partial restoration of the neurotransmitter is expected and should mirror a decrease in H-reflex inhibition. In the present study, we explored the time course of spinal excitability during a period of stretching. SOL H-reflex was elicited during a passive dorsiflexion movement, at 3, 6, 9, 12, 18, 21, and 25 s during maximal ankle dorsiflexion, during plantar flexion (PF) and after stretching, in 12 healthy young individuals. Measurements during passive dorsiflexion, PF and after stretching were all performed with the ankle at 100° angle; measurements during static stretching were performed at individual maximal dorsiflexion. H-reflex was strongly inhibited during the dorsiflexion movement and at maximal dorsiflexion (p < 0.0001) but recovered during PF and after stretching. During stretching H-reflex showed a recovery pattern (r = 0.836, P = 0.019) with two distinct recovery steps at 6 and 21 s into stretching. It is hypothesized that the H-reflex inhibition observed until 18 s into stretching is the result of post-activation depression of Ia afferent caused by the passive dorsiflexion movement needed to move the ankle into testing position. From 21 s into stretching, the lower inhibition could be caused by a weaker post-activation depression, inhibition from secondary afferents or post-synaptic inhibitions

    Effect of Transcranial Brain Stimulation for the Treatment of Alzheimer Disease: A Review

    Get PDF
    Available pharmacological treatments for Alzheimer disease (AD) have limited effectiveness, are expensive, and sometimes induce side effects. Therefore, alternative or complementary adjuvant therapeutic strategies have gained increasing attention. The development of novel noninvasive methods of brain stimulation has increased the interest in neuromodulatory techniques as potential therapeutic tool for cognitive rehabilitation in AD. In particular, repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS) are noninvasive approaches that induce prolonged functional changes in the cerebral cortex. Several studies have begun to therapeutically use rTMS or tDCS to improve cognitive performances in patients with AD. However, most of them induced short-duration beneficial effects and were not adequately powered to establish evidence for therapeutic efficacy. Therefore, TMS and tDCS approaches, seeking to enhance cognitive function, have to be considered still very preliminary. In future studies, multiple rTMS or tDCS sessions might also interact, and metaplasticity effects could affect the outcome

    Transient Increase in Cortical Excitability Following Static Stretching of Plantar Flexor Muscles

    No full text
    Spinal excitability in humans is inhibited by both passively holding a static position with the muscle lengthened (static stretching) and by a single non-active lengthening movement. However, whilst immediately after a passive lengthening movement the inhibition persists for several seconds, there seem to be an immediate recovery following static stretching. This result is counter intuitive and could be attributed to methodological procedures. Indeed, differently to what has been done until now, in order to study whether static stretching has a transient effect on the neuromuscular pathway, the procedure should be repeated many times and measurements collected at different time points after stretching. In the present study we repeated 60 times 30 s static stretching of ankle plantar flexors and measured tap reflex (T-reflex), Hoffman reflex (H-reflex), and motor evoked potentials (MEPs) from the Soleus muscle at several time points, starting from immediately after until 30 s following the procedure. T-reflex was strongly inhibited (range 31–91%, p = 0.005) and the inhibition persisted for 30 s showing a slow recovery (r = 0.541, p = 0.037). H-reflex was not affected by the procedure. Stretching increased the size of the MEPs (p < 0.0001), differences at times 0 and 2 s after stretching (p = 0.015 and p = 0.047, respectively). These results confirm that static stretching reduces muscle spindle sensitivity. Moreover it is suggested that post-activation depression of Ia afferents, which is commonly considered the cause of H-reflex depression during both dorsiflexion and static stretching, vanished immediately following stretching or is counteracted by an increased corticospinal excitability

    Adult Gross Motor Learning and Sleep: Is There a Mutual Benefit?

    No full text
    Posttraining consolidation, also known as offline learning, refers to neuroplastic processes and systemic reorganization by which newly acquired skills are converted from an initially transient state into a more permanent state. An extensive amount of research on cognitive and fine motor tasks has shown that sleep is able to enhance these processes, resulting in more stable declarative and procedural memory traces. On the other hand, limited evidence exists concerning the relationship between sleep and learning of gross motor skills. We are particularly interested in this relationship with the learning of gross motor skills in adulthood, such as in the case of sports, performing arts, devised experimental tasks, and rehabilitation practice. Thus, the present review focuses on sleep and gross motor learning (GML) in adults. The literature on the impact of sleep on GML, the consequences of sleep deprivation, and the influence of GML on sleep architecture were evaluated for this review. While sleep has proven to be beneficial for most gross motor tasks, sleep deprivation in turn has not always resulted in performance decay. Furthermore, correlations between motor performance and sleep parameters have been found. These results are of potential importance for integrating sleep in physiotherapeutic interventions, especially for patients with impaired gross motor functions

    Abnormal short-latency synaptic plasticity in the motor cortex of subjects with Becker muscular dystrophy: a rTMS study

    No full text
    We used repetitive transcranial magnetic stimulation (rTMS) to further investigate motor cortex excitability in 13 patients with Becker muscular dystrophy (BMD), six of them with slight mental retardation. RTMS delivered at 5Hz frequency and suprathreshold intensity progressively increases the size of motor evoked potentials (MEPs) in healthy subjects; the rTMS-induced facilitation of MEPs was significantly reduced in the BMD patients mentally retarded or classified as borderline when compared with age-matched control subjects and the BMD patients with normal intelligence. The increase in the duration of the cortical silent period was similar in both patient groups and controls. These findings suggest an altered cortical short-term synaptic plasticity in glutamate-dependent excitatory circuits within the motor cortex in BMD patients with intellectual disabilities. RTMS studies may shed new light on the physiological mechanisms of cortical involvement in dystrophinopathies
    corecore