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ABSTRACT 

Background and Purpose: Amongst the impulse control disorders (ICDs) associated with dopamine 

replacement therapy in patients with Parkinson’s disease (PD) is a repetitive complex stereotyped 

behaviour called punding. Disruption of the reciprocal loops between the striatum and structures in 

the prefrontal cortex (PFC) following dopamine depletion may predispose to these behavioural 

disorders in PD. We aimed at assessing the effects of transcranial magnetic stimulation (rTMS) over 

the dorsolateral PFC (DLPFC) on punding in PD. Metods: We used low-frequency (LF) rTMS in 

four PD patients presenting punding. Results: Punding was transiently reversed by LF rTMS of 

DLPFC without enhancing motor impairment. The effect was more sustained after right DLPFC 

rTMS. Conclusions: LF rTMS produces a transient beneficial effect in PD patients with punding, 

similar to that reported in PD patients with levodopa-induced dyskinesias. RTMS might have 

therapeutic potential for the treatment of punding and perhaps other ICDs in PD.  

 

 

 

 

 

 

 



      3 

Key words: Parkinson's disease, punding, impulse control disorders, repetitive transcranial 

magnetic stimulation 

Introduction 

In Parkinson's disease (PD), there is increasing evidence for disorders in the impulsive-compulsive 

spectrum, related to the disease itself, to the pharmacological management of the disease or to both. 

These disorders include dopamine dysregulation syndrome, with addictive and stereotyped 

behaviour, and impulse control disorders, such as pathological gambling, compulsive shopping, 

binge eating and hypersexuality. A phenomenologically distinct compulsive behavior known as 

punding (a complex stereotypical behaviour characterized by intense fascination for repetitive 

meaningless movements that is recognized by the patient as disruptive but associated with feeling of 

calmness/relief) has also been reported in PD patients under dopaminergic therapy [1-3]. Although 

the pathophysiology of underlying mechanisms is not fully understood, disruption of the reciprocal 

loops between the striatum and structures in the prefrontal cortex (PFC) following dopamine 

depletion is thought to predispose to these behavioral disorders in PD. The inferior frontal 

gyrus/dorsolateral PFC is important in shifting attention, which contributes to the ability to resist 

intrusive information such as thinking about drugs/behaviors [4]; subjects with ventromedial PFC 

lesions show characteristic deficits in planning, and often make decisions that lead to negative 

consequences [5]. On the other hand, the medial PFC innervates the striatum (in particular the 

nucleus accumbens and anteromedial caudate-putamen), and participates in the regulation of 

subcortical dopaminergic mechanisms [6,7].   

Another major complication of long-term dopaminergic treatment of PD are dyskinesias. Cinical 

and preclinical studies suggest that chronic intermittent dopamine receptor agonist treatment 

induces dyskinesias and punding [8].  
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Transcranial magnetic stimulation (TMS), a non-invasive means of electrically stimulating neurons 

in the human cerebral cortex, is able to modify neuronal activity locally and at distant sites when 

delivered in series or trains of pulses [9]. Repetitive TMS (rTMS) can be applied as continuous 

trains of low-frequency (1 Hz or less) or bursts of higher frequency (≥ 1 Hz) rTMS; in general, low-

frequency (LF) rTMS is thought to reduce, and high-frequency rTMS to enhance excitability in the 

targeted cortical region. In particular, slow rTMS, where 1 magnetic pulse is applied every second 

(1 Hz), delivered to the motor cortex can give rise to a lasting decrease in corticospinal excitability 

[10,11]. LF rTMS to the supplementary motor area was found to reduce levodopa-induced 

dyskinesia but only for up to 30 minutes [12].  

A small open study of LF rTMS over motor cortex showed reduction of peak dose dyskinesia, 

which was measurable and significant a day after the last session [13]. Filipovic and colleagues [14] 

demonstrated the existence of residual beneficial clinical aftereffects of consecutive daily 

applications of LF rTMS on dyskinesias in PD. 

The beneficial effects of LF rTMS on dyskinesias are thought to rely on the transient depression of 

synaptic excitability at cortical level or on the promotion of depotentiation at corticostriatal circuits. 

Bases on this assumption, we hypothesized that inhibition of dorsolateral PFC (DLPFC) by LF 

rTMS may also modulate motor stereotyped behaviors in PD patients. DLPFC is a common target 

for rTMS experiments and therapeutic protocols; in this study we used DLPFC LF rTMS in four PD 

patients who showed punding. 

 

Methods 

Patients   

We studied 4 patients with PD who develop punding. Demographic and clinical characteristics of 

the patients are shown in Table 1. The patients recognized that time spent on these activities was 
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excessive and inappropriate, but found it difficult to disengage from these activities, as he described 

them as „very soothing“, became irritated if they were interrupted and were sometimes frustrated by 

their inability to stop these behaviors. 

All the patients were on dopaminergic medication, and were taking no other drugs that could affect 

cortical excitability. 

Punding scale score [2,15] was carried out before (T0), 1 hour (T1), 12 hours (T2) and 24 hours 

(T3) after TMS examination. The self-report questionnaire survey [15] was adapted from Evans et 

al.'s [2] “Punding in Parkinson's Disease”. The adapted questionnaire was scored separately for each 

activity giving a value between 0 and 42, with higher scores indicative of punding. 

At the same time the patients also completed the doubting and hoarding distress subscales of an 

obsessive-compulsive inventory (OCI) [16]. The psychopathological assessment also comprised the 

Hamilton Anxiety Scale [17] (HAM-A) and the Hamilton Depression Rating Scale (HAM-D) [18].  

The patients were also screened for other ICDs; all the patients only have punding behaviour. 

The control group consisted of nine age-matched control subjects (mean years 65.2 years, range 59-

71 years).  

The patients and the control subjects provided informed consent before participation in the study, 

which was performed according to the recently updated safety and application guidelines [19] and 

approved by the Ethics Committee. 

 

Transcranial magnetic stimulation 
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Magnetic Rapid Transcranial Magnetic Stimulator (Magstim, Whitland, UK) was used. The real 

rTMS was carried out using a standard Magstim figure-of-eight coil; the sham rTMS was carried 

out with a Placebo Coil System (Magstim Company). Three series of 600 stimuli at 1 Hz rate, with 

1-minute breaks in between, were applied during each rTMS session (for a total of 1.800 stimuli, 

duration 32 minutes). The stimulator intensity was set to be just below the active motor threshold 

(AMT). AMT was defined as the minimum stimulus intensity that produced a liminal motor evoked 

response (about 200 μV in 50% of 10 trials) during isometric contraction at about 20% maximum 

[20]. The DLPFC is a broad area; we used a site similar to that used by other research groups using 

TMS [21,22]. The coil was placed 5 cm anterior from the hand motor area on the left and right 

hemispheres and held parallel to the midsagittal line. The hand motor area was located by finding 

the lowest threshold spot for activating the contralateral FDI muscle.  

The patients and the controls were blinded to the real vs sham therapy. Real rTMS with selected 

intensity did not induce muscle contractions in any of the patients. The patients and the controls 

were given real rTMS to the right DLPFC and the left DLPFC and a sham rTMS to the right 

DLPFC on separate days, with an intersession interval of 4 days.  

The order of the rTMS treatments was randomly assigned and counterbalanced across subjects. The 

time of day for treatment visits was kept constant for each patient. 

The primary outcome analyses were the changes of the Punding scale score and of the OCI distress 

rating scores induced by rTMS, while secondary outcome measures analysis included changes in 

HAM-A and HAM-D scores.  

 

 Statistical Analysis 

In order to assess whether the test scores of the patients were statistically different from those of the 

control group, we performed a two-samples t-test for the scores at time T0. As for the effect of 
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rTMS stimulation, for each time of examination, we used a two-samples t-test for the score 

differences with respect to time T0 of the 4 patients against the 9 controls. The mean score 

difference of the patients revealed in which direction (if any) the rTMS affected the patients’ score 

(either by increasing or decreasing it). p-value < 0.05 was taken as the significant threshold for all 

individual and multiple comparisons. We computed also the effect sizes and power for all 

individual comparison. 

This analysis was performed for each of the 6 test scores and is based on a normality assumption on 

the distribution of the scores. In order to control for non-normality, we replicated the analysis via 

the non-parametric Mann-Whitney tests. 

Finally, we investigated the effect of rTMS stimulation on the Punding scale score via a repeated 

measures ANOVA. We study the effect on the score difference y for the 13 subjects of the 

predictors SITE (factor βj
S with categories Sham (j=1), right DLPFC (j=2) and left DLPFC (j=3) 

and TIME (factor βk
T with categories T1 (k=1), T2 (k=2) and T3 (k=3)) controlling for the GROUP 

(indicator variable βl
G for the patients’ group). We estimate the model with two-way and three-way 

interactions by adding a random intercept for each individual (i=1,...,13): 

yijki=µ+αi+βj
S +βk

T +βl
G +βjk

ST + βjl
SG + βkl

TG + βjkl
STG +ε     (1) 

 (the superscripts are labels and do not represent power). The effects associated with TIME=1 

SITE=1 and GROUP=0 are set to zero (reference levels), αi are i.i.d. gaussian with mean zero and ε 

is the error term. 

 
 
 
                                               

Results 
 

Punding scale  
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The Punding Scale score at T0 was significantly higher in the patient group (24.50 ± 3.42) than in 

the control group (10.44 ± 4.10; p <0.0001). After rTMS over the right DLPFC the Punding Scale 

score showed a significant decrease at T1 (p < 0.0001) and at T2 (p < 0.0001), while the effect 

disappeared at T3. After rTMS over the left DLPFC, we observed a significant decrease at T1 (p 

<0.0001), while at T2 and T3 there was a tendency toward a reduction but the difference did not 

reach a statistical significance. No effects were observed after sham stimulation. 

Estimation of model (1) shows statistically significant interaction effects for β21
SG , β31

SG (both 

negative with p-value<0.0001), β221
STG , β231

STG , β321
STG and β331

STG (all positive with p=0.008,1 

0.0075, <0.0001 and 0.0185, respectively); moreover all main effects and the intercept α were not 

significantly different from zero (likelihood ratio test p=0.0134). It confirmed that rTMS had no 

overall effect on the control group and, moreover, that no effects were observed after sham 

stimulation on the patients’ group. The negative sign of  β21
SG and β31

SG also confirms that both 

right and left DLPFC stimulations induced a lower score at T1, while the positive sign of β221
STG , 

β231
STG , β321

STG and β331
STG  indicating that the effect disappeared at T2 and at T3.  

 

Doubting and Hoarding distress rating scores of the OCI  

The Doubting Distress Rating score at T0 was significantly higher in the patient group (3.75 ± 0.50) 

than in the control group (0.22 ± 0.44; p <0.0001). After rTMS over the right DLPFC the Doubting 

Distress Rating score of the patients showed a significant decrease at T1 (p < 0.0001), and at T2, 

while the effect disappeared at T3. After rTMS over the left DLPFC we observed a decrease only at 

T1. No effects were observed after sham stimulation. Similar results were obtained for the Hoarding 

distress rating score. 
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HAM-A, HAM-D 

The HAM-A score at time T0 was significantly higher in the patient group (18.25 ± 3.50) than in 

the control group (1.22 ± 1.09; p <0.0001). RTMS had no overall effect on the patient group. 

Similar conclusions apply for HAM-D and UPDRS. 

No side effects and no adverse effects on motor function were noted in the patients, as evaluated 

according to the motor section of UPDRS [23]. 

The raw data are displayed in Figure 1. Mean scores are reported in Table 2, together with test 

results. 

 
     
                                             

 
Discussion 

We found in this study that LF rTMS may suppress punding, as it does levodopa-induced 

dyskinesias in PD. Normal goal-directed behaviour is orchestrated by the striatum, through parallel 

circuits that interconnect [24]. The striatum is a mosaic of two compartments, a ventral “limbic” 

part and a dorsal “sensorimotor” part. The ventral part receives input from the prelimbic cortex, 

whereas the dorsal part (the matrix) from sensory and motor cortex areas.  

PD patients may develop plastic changes in the striatal matrix leading to hyperkinesias, caused by 

extracellular striatal dopaminergic fluctuations due to pulsatile dopamine replacement therapy. As 

soon as these changes are also seen in the striatal striosomes, a stereotyped, non adaptive, rigide, 

behaviour (punding) may occur. 

Indeed, dopaminergic treatment primes the dorsal striatal system to respond to a subsequent 

dopaminergic challenge both with hyperkinesias and repetitive, stereotyped behaviour in an animal 
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model for PD [25]. In the monkeys, repeated exposure to cocaine (an animal model of punding) 

leads to stereotyped behaviour linked to dorsal striatal activation [26]. A glutamate receptor 

antagonist was able to reduce the dorsal striatal overactivation and the associated behaviour 

abnormalities in the animal PD-model [25]. The dorsal striatal overactivation supposedly results 

from a disruption of the normal and controlled flow of information from ventral to dorsal striatal 

structures, probably caused by glutamatergic hypersensitivity.   

Both the dorsal striosomes and the matrix are regulated by glutamatergic neurons via N-methyl-D-

aspartate (NMDA) receptors [27]. Combined activation of sensitized dopamine and NMDA 

receptors may be required to evoke both levodopa-induced dyskinesias and punding in patients with 

PD, even if the involved neuronal networks may differ. Glutamatergic projections from the cerebral 

cortex are known to modulate signal transduction of basal ganglia-thalamocortical circuits and the 

sensitized glutamate NMDA receptors also may be required to express levodopa-induced 

dyskinesias and stereotypies [28]. The rationale for trying LF rTMS is based on the evidence that it 

induces a long-lasting decrease of motor cortex excitability that could antagonize glutamatergic 

hypersensitivity by reducing the response of the striatum to glutamatergic excitatory inputs. 

Interestingly, the NMDA receptor antagonist amantadine suppresses the expression of levodopa-

induced dyskinesias [29] and was also found to be effective in reducing punding in a PD patient 

[30]. Moreover, punding is associated with ICDs, according to a recent cross-sectional study [31]. 

Punding treatment is usually based on the reduction of dopamine replacement therapy, which 

frequently results in increased motor disability. Our patient’s punding was reversed by rTMS, 

which did not aggravate motor function.  

 The fact that PD patients often become anxious, stressed or frustrated when stopped in their 

compulsive behaviours, suggests that emotional/motivational factors are also involved in punding to 
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a certain degree. It should be noted that all the patients present mild to moderate anxiety; however, 

TMS failed to modify significantly the HAM-A score in these patients. 

We found significant changes in the Doubting and Hoarding Distress Scales of the OCI after rTMS. 

This finding is in agreement with several lesion, neuroimaging and neuropsychological studies 

indicating that the cortico-striatal circuitry may have a key role in the pathogenesis of obsessive-

compulsive disorders [32,33]. Therefore, another possible interpretation of our results is that TMS 

of the DLPFC affects the compulsive aspects of punding (the sense of needing to engage in a 

behavior and the relief that arises from engaging in it), and this is the reason why the significant 

results on the punding scale are associated with change in OCD subscale measures. 

The fact that PD patients often become anxious, stressed or frustrated when stopped in their 

compulsive behaviours, suggests that emotional/motivational factors are also involved in punding to 

a certain degree. It should be noted that all the patients present mild to moderate anxiety; however, 

TMS failed to modify significantly the HAM-A score in these patients. 

A limitation of this study is the small patient sample. Although further studies on a large group of 

patients are warranted, the present report suggests that rTMS might have therapeutic potential for 

the treatment of punding in PD patients. Our preliminary findings might open up a new therapeutic 

perspective in impulse-compulsive disorders in PD based on neuromodulation.  
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Figure legend  

Figure 1: 

Primary and secondary outcome measures before (T0), 1 hour (T1), 12 hours (T2) and 24 hours 

(T3) after TMS examination to the right DPLFC (black), the left DPLFC (dark gray) and after sham 

stimulation (light gray). Lines show mean scores among controls (solid lines) and patients (dashed 

lines).  

 
 
 
 
 
 
 
 
 


