8 research outputs found

    Interrater Reliability of the Wolf Motor Function Test–Functional Ability Scale: Why It Matters

    Get PDF
    Background. One important objective for clinical trialists in rehabilitation is determining efficacy of interventions to enhance motor behavior. In part, limitation in the precision of measurement presents a challenge. The few valid, low-cost observational tools available to assess motor behavior cannot escape the variability inherent in test administration and scoring. This is especially true when there are multiple evaluators and raters, as in the case of multisite randomized controlled trials (RCTs). One way to enhance reliability and reduce variability is to implement rigorous quality control (QC) procedures. Objective. This article describes a systematic QC process used to refine the administration and scoring procedures for the Wolf Motor Function Test (WMFT)–Functional Ability Scale (FAS). Methods. The QC process, a systematic focus-group collaboration, was developed and used for a phase III RCT, which enlisted multiple evaluators and an experienced WMFT-FAS rater panel. Results. After 3 staged refinements to the administration and scoring instructions, we achieved a sufficiently high interrater reliability (weighted κ = 0.8). Conclusions and Implications. A systematic focus-group process was shown to be an effective method to improve reliability of observational assessment tools for motor behavior in neurorehabilitation. A reduction in noise-related variability in performance assessments will increase power and potentially lower the number needed to treat. Improved precision of measurement can lead to more cost-effective and efficient clinical trials. Finally, we suggest that improved precision in measures of motor behavior may provide more insight into recovery mechanisms than a single measure of movement time alone

    Reduced Upper Limb Recovery in Subcortical Stroke Patients With Small Prior Radiographic Stroke

    Get PDF
    Background: Research imaging costs limit lesion-based analyses in already expensive large stroke rehabilitation trials. Despite the belief that lesion characteristics influence recovery and treatment response, prior studies have not sufficiently addressed whether lesion features are an important consideration in motor rehabilitation trial design.Objective: Using clinically-obtained neuroimaging, evaluate how lesion characteristics relate to upper extremity (UE) recovery and response to therapy in a large UE rehabilitation trial.Methods: We reviewed lesions from 297 participants with mild-moderate motor impairment in the Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) study and their association with motor recovery, measured by the UE Fugl-Meyer (UE-FM). Significant lesion features identified on correlational and bivariate analysis were further analyzed for associations with recovery and therapy response using longitudinal mixed models.Results: Prior radiographic stroke was associated with less recovery on UE-FM in participants with motor impairment from subsequent subcortical stroke (−5.8 points) and in the overall sample (−3.6 points), but not in participants with cortical or mixed lesions. Lesion volume was also associated with less recovery, particularly after subcortical stroke. Every decade increase in age was associated with 1 less point of recovery on UE-FM. Response to specific treatment regimens varied based on lesion characteristics. Subcortical stroke patients experienced slightly less recovery with higher doses of upper extremity task-oriented training. Participants with cortical or mixed lesions experienced more recovery with higher doses of usual and customary therapy. Other imaging features (leukoaraiosis, ischemic vs. hemorrhagic stroke) were not significant.Conclusions: ICARE clinical imaging revealed information useful for UE motor trial design: stratification of persons with and without prior radiographic stroke may be required in participants with subcortical stroke, the majority of motor rehabilitation trial participants. Most of the prior radiographic strokes were small and cortically-based, suggesting even minor prior brain injury remote to the acute stroke lesion may limit spontaneous and therapy-related recovery. Lesion location may be associated with response to different therapy regimens, but the effects are variable and of unclear significance

    Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE): a randomized controlled trial protocol

    No full text
    Abstract Background Residual disability after stroke is substantial; 65% of patients at 6 months are unable to incorporate the impaired upper extremity into daily activities. Task-oriented training programs are rapidly being adopted into clinical practice. In the absence of any consensus on the essential elements or dose of task-specific training, an urgent need exists for a well-designed trial to determine the effectiveness of a specific multidimensional task-based program governed by a comprehensive set of evidence-based principles. The Interdisciplinary Comprehensive Arm Rehabilitation Evaluation (ICARE) Stroke Initiative is a parallel group, three-arm, single blind, superiority randomized controlled trial of a theoretically-defensible, upper extremity rehabilitation program provided in the outpatient setting. The primary objective of ICARE is to determine if there is a greater improvement in arm and hand recovery one year after randomization in participants receiving a structured training program termed Accelerated Skill Acquisition Program (ASAP), compared to participants receiving usual and customary therapy of an equivalent dose (DEUCC). Two secondary objectives are to compare ASAP to a true (active monitoring only) usual and customary (UCC) therapy group and to compare DEUCC and UCC. Methods/design Following baseline assessment, participants are randomized by site, stratified for stroke duration and motor severity. 360 adults will be randomized, 14 to 106 days following ischemic or hemorrhagic stroke onset, with mild to moderate upper extremity impairment, recruited at sites in Atlanta, Los Angeles and Washington, D.C. The Wolf Motor Function Test (WMFT) time score is the primary outcome at 1 year post-randomization. The Stroke Impact Scale (SIS) hand domain is a secondary outcome measure. The design includes concealed allocation during recruitment, screening and baseline, blinded outcome assessment and intention to treat analyses. Our primary hypothesis is that the improvement in log-transformed WMFT time will be greater for the ASAP than the DEUCC group. This pre-planned hypothesis will be tested at a significance level of 0.05. Discussion ICARE will test whether ASAP is superior to the same number of hours of usual therapy. Pre-specified secondary analyses will test whether 30 hours of usual therapy is superior to current usual and customary therapy not controlled for dose. Trial registration http://www.ClinicalTrials.gov Identifier: NCT00871715</p

    Supplemental_Material – Supplemental material for Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial

    No full text
    <p>Supplemental material, Supplemental_Material for Accelerating Stroke Recovery: Body Structures and Functions, Activities, Participation, and Quality of Life Outcomes From a Large Rehabilitation Trial by Rebecca Lewthwaite, Carolee J. Winstein, Christianne J. Lane, Sarah Blanton, Burl R. Wagenheim, Monica A. Nelsen, Alexander W. Dromerick and Steven L. Wolf in Neurorehabilitation and Neural Repair</p

    Energy Projects, Social Licence, Public Acceptance and Regulatory Systems in Canada: A White Paper

    No full text

    Body-composition changes in the Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy (CALERIE)-2 study: A 2-y randomized controlled trial of calorie restriction in nonobese humans

    No full text
    Background: Calorie restriction (CR) retards aging and increases longevity in many animal models. However, it is unclear whether CR can be implemented in humans without adverse effects on body composition.Objective: We evaluated the effect of a 2-y CR regimen on body composition including the influence of sex and body mass index (BMI; in kg/m2) among participants enrolled in CALERIE-2 (Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy), a multicenter, randomized controlled trial.Design: Participants were 218 nonobese (BMI: 21.9-28.0) adults aged 21-51 y who were randomly assigned to 25% CR (CR, n = 143) or ad libitum control (AL, n = 75) in a 2:1 ratio. Measures at baseline and 12 and 24 mo included body weight, waist circumference, fat mass (FM), fat-free mass (FFM), and appendicular mass by dual-energy X-ray absorptiometry; activity-related energy expenditure (AREE) by doubly labeled water; and dietary protein intake by self-report. Values are expressed as means ± SDs.Results: The CR group achieved 11.9% ± 0.7% CR over 2-y and had significant decreases in weight (-7.6 ± 0.3 compared with 0.4 ± 0.5 kg), waist circumference (-6.2 ± 0.4 compared with 0.9 ± 0.5 cm), FM (-5.4 ± 0.3 compared with 0.5 ± 0.4 kg), and FFM (-2.0 ± 0.2 compared with -0.0 ± 0.2 kg) at 24 mo relative to the AL group (all between-group P < 0.001). Moreover, FFM as a percentage of body weight at 24 mo was higher, and percentage of FM was lower in the CR group than in the AL. AREE, but not protein intake, predicted preservation of FFM during CR (P < 0.01). Men in the CR group lost significantly more trunk fat (P = 0.03) and FFM expressed as a percentage of weight loss (P < 0.001) than women in the CR group.Conclusions: Two years of CR had broadly favorable effects on both whole-body and regional adiposity that could facilitate health span in humans. The decrements in FFM were commensurate with the reduced body mass; although men in the CR group lost more FFM than the women did, the percentage of FFM in the men in the CR group was higher than at baseline. CALERIE was registered at clinicaltrials.gov as NCT00427193
    corecore