4,279 research outputs found
Spin and magnetism in old neutron stars
The thermal, spin and magnetic evolution of neutron stars in the old low mass
binaries is first explored. Recycled to very short periods via accretion
torques, the neutron stars lose their magnetism progressively. If accretion
proceeds undisturbed for 100 Myrs these stars can rotate close to break up with
periods far below the minimum observed of 1.558 ms. We investigate their
histories using population synthesis models to show that a tail should exist in
the period distribution below 1.558 ms. The search of these ultrafastly
spinning neutron stars as pulsars can help discriminating among the various
equations of state for nuclear matter, and can shed light into the physics of
binary evolution.
The evolution of isolated neutron stars in the Galaxy is explored beyond the
pulsar phase. Moving through the tenuous interstellar medium, these old
solitary neutron stars lose their rotational energy. Whether also their
magnetism fades is still a mystery. A population synthesis model has revealed
that only a tiny fraction of them is able to accrete from the interstellar
medium, shining in the X-rays. There is the hope that these solitary stars will
eventually appear as faint sources in the Chandra sky survey. This might give
insight on the long term evolution of the magnetic field in isolated objects.Comment: 28 pages, 11 PostScript figures. To be published in "Physics of
Neutron Star Interiors" (Lecture Notes in Physics), ed. D. Blaschke, N.K.
Glendenning and A. Sedrakian (Springer, 2001
A Method to Evaluate the Stimulation of a Real World Field of View by Means of a Spectroradiometric Analysis
Stimulation elicited by a real world field of view is related to the color, the intensity and the direction of the information reaching the eye: different spectral power distributions of light trigger different responses. An evaluation of the stimulation provided by the field of view can be performed by measuring the spectral radiance with a spectroradiometer and weighting this data with an efficiency curve. Different weights (physical, physiological and psychological) can lead to different analyses and consequently to different results. The proposed method allows an overall and simplified evaluation of the field of view based on spectral and luminance measures and a script that processes the luminous information. The final aim of this approach is to provide further information about the light stimulation reaching the retina and to supply a qualitative evaluation of the field of view, allowing to know how much stimulation is coming from a certain area within the visual field depending on the type of surface, basing on spectral and directional information. This approach can have practical implications, allowing technicians and designers to take into consideration the possible visual fields, in order to properly shape the features of stimulation throughout the day, hence following a field of view-based dynamic design
A Method to Evaluate the Stimulation of a Real World Field of View by Means of a Spectroradiometric Analysis
Stimulation elicited by a real world field of view is related to the color, the intensity and the direction of the information reaching the eye: different spectral power distributions of light trigger different responses. An evaluation of the stimulation provided by the field of view can be performed by measuring the spectral radiance with a spectroradiometer and weighting this data with an efficiency curve. Different weights (physical, physiological and psychological) can lead to different analyses and consequently to different results. The proposed method allows an overall and simplified evaluation of the field of view based on spectral and luminance measures and a script that processes the luminous information. The final aim of this approach is to provide further information about the light stimulation reaching the retina and to supply a qualitative evaluation of the field of view, allowing to know how much stimulation is coming from a certain area within the visual field depending on the type of surface, basing on spectral and directional information. This approach can have practical implications, allowing technicians and designers to take into consideration the possible visual fields, in order to properly shape the features of stimulation throughout the day, hence following a field of view-based dynamic design
Query refinement for patent prior art search
A patent is a contract between the inventor and the state, granting a limited time period to the inventor to exploit his invention. In exchange, the inventor must put a detailed description of his invention in the public domain. Patents can encourage innovation and economic growth but at the time of economic crisis patents can hamper such growth. The long duration of the application process is a big obstacle that needs to be addressed to maximize the benefit of patents on innovation and economy. This time can be significantly improved by changing the way we search the patent and non-patent literature.Despite the recent advancement of general information retrieval and the revolution of Web Search engines, there is still a huge gap between the emerging technologies from the research labs and adapted by major Internet search engines, and the systems which are in use by the patent search communities.In this thesis we investigate the problem of patent prior art search in patent retrieval with the goal of finding documents which describe the idea of a query patent. A query patent is a full patent application composed of hundreds of terms which does not represent a single focused information need. Other relevance evidences (e.g. classification tags, and bibliographical data) provide additional details about the underlying information need of the query patent. The first goal of this thesis is to estimate a uni-gram query model from the textual fields of a query patent. We then improve the initial query representation using noun phrases extracted from the query patent. We show that expansion in a query-dependent manner is useful.The second contribution of this thesis is to address the term mismatch problem from a query formulation point of view by integrating multiple relevance evidences associated with the query patent. To do this, we enhance the initial representation of the query with the term distribution of the community of inventors related to the topic of the query patent. We then build a lexicon using classification tags and show that query expansion using this lexicon and considering proximity information (between query and expansion terms) can improve the retrieval performance. We perform an empirical evaluation of our proposed models on two patent datasets. The experimental results show that our proposed models can achieve significantly better results than the baseline and other enhanced models
dCATCH—A Numerical Package for d-Variate near G-Optimal Tchakaloff Regression via Fast NNLS
We provide a numerical package for the computation of a d-variate near G-optimal polynomial regression design of degree m on a finite design space X ⊂ R d , by few iterations of a basic multiplicative algorithm followed by Tchakaloff-like compression of the discrete measure keeping the reached G-efficiency, via an accelerated version of the Lawson-Hanson algorithm for Non-Negative Least Squares (NNLS) problems. This package can solve on a personal computer large-scale problems where c a r d ( X ) × dim ( P 2 m d ) is up to 10 8 – 10 9 , being dim ( P 2 m d ) = 2 m + d d = 2 m + d 2 m . Several numerical tests are presented on complex shapes in d = 3 and on hypercubes in d > 3
Making Things Explainable vs Explaining: Requirements and Challenges Under the GDPR
open3noAbstract. The European Union (EU) through the High-Level Expert Group on Artificial Intelligence (AI-HLEG) and the General Data Protection Regulation (GDPR) has recently posed an interesting challenge to the eXplainable AI (XAI) community, by demanding a more user-centred approach to explain Automated Decision-Making systems (ADMs). Looking at the relevant literature, XAI is currently focused on producing explainable software and explanations that generally follow an approach we could term One-Size-Fits-All, that is unable to meet a requirement of centring on user needs. One of the causes of this limit is the belief that making things explainable alone is enough to have pragmatic explanations. Thus, insisting on a clear separation between explainabilty (something that can be explained) and explanations, we point to explanatorY AI (YAI) as an alternative and more powerful approach to win the AI-HLEG challenge. YAI builds over XAI with the goal to collect and organize explainable information, articulating it into something we called user-centred explanatory discourses. Through the use of explanatory discourses/narratives we represent the problem of generating explanations for Automated Decision-Making systems (ADMs) into the identification of an appropriate path over an explanatory space, allowing explainees to interactively explore it and produce the explanation best suited to their needs.openSovrano, Francesco; Vitali, Fabio; Palmirani, MonicaSovrano, Francesco; Vitali, Fabio; Palmirani, Monic
Legal Knowledge Extraction for Knowledge Graph Based Question-Answering
This paper presents the Open Knowledge Extraction (OKE) tools combined with natural language analysis of the sentence in order to enrich the semantic of the legal knowledge extracted from legal text. In particular the use case is on international private law with specific regard to the Rome I Regulation EC 593/2008, Rome II Regulation EC 864/2007, and Brussels I bis Regulation EU 1215/2012. A Knowledge Graph (KG) is built using OKE and Natural Language Processing (NLP) methods jointly with the main ontology design patterns defined for the legal domain (e.g., event, time, role, agent, right, obligations, jurisdiction). Using critical questions, underlined by legal experts in the domain, we have built a
question answering tool capable to support the information retrieval and to answer to these queries. The system should help the legal expert to retrieve the relevant legal information connected with topics, concepts, entities, normative references in order to integrate his/her searching activities
- …