6 research outputs found

    Synchronization and anchoring of two non-harmonic canonical-dissipative oscillators via Smorodinsky-Winternitz potentials

    Full text link
    Two non-harmonic canonical-dissipative limit cycle oscillators are considered that oscillate in one-dimensional Smorodinsky-Winternitz potentials. It is shown that the standard approach of the canonical-dissipative framework to introduce dissipative forces leads naturally to a coupling force between the oscillators that establishes synchronization. The non-harmonic character of the limit cycles in the context of anchoring, the phase difference between the synchronized oscillators, and the degree of synchronization are studied in detail.Comment: 7 pages, 1 figur

    Canonical-dissipative limit cycle oscillators with a short-range interaction in phase space

    Get PDF
    We consider limit cycle oscillators in terms of canonical-dissipative systems that exhibit a short-range interaction in velocity and position space as described by the Dirac delta function. We derive analytical expressions for stationary distribution functions in phase space and energy space and propose a numerical simulation scheme for the simulation of the many body system as well. We show that the short-range interaction squeezes or stretches energy distribution functions depending on whether the interaction can be regarded as attractive or repulsive. In addition to the interaction effect, we show that energy distribution functions become narrower when limit cycle attractors become stronger. Finally, energy distributions become broader when the pumping energy is increased. The latter effect however disappears in the high energy domain.Розглянуто граничні циклічні осцилятори в термінах канонічно-дисипативних систем, які демонструють короткосяжну взаємодію у швидкісному та позиційному просторі, що описаний дельта-функцією Дірака. Виведено аналітичні вирази для стаціонарних функцій розподілу у фазовому просторі та енергетичному просторі та запропоновано числову симуляційну схему для моделювання багаточастинкової системи. Показано, що короткосяжна взаємодія стискає чи розтягує енергетичні функції розподілу залежно від того, чи взаємодію можна вважати притягальною, чи відштовхувальною. Крім впливу взаємодії, показано, що енергетичні функції розподілу стають вужчими, якщо межа циклічних атракторів стає сильнішою. Накінець, енергетичні розподіли стають ширшими з ростом енергії накачки. Цей ефект, проте, зникає у високоенергетичній області

    Unstable eigenvectors and reduced amplitude spaces specifying limit cycles of coupled oscillators with simultaneously diagonalizable matrices: with applications from electric circuits to gene regulation

    No full text
    A fascinating phenomenon is the self-organization of coupled systems to a whole. This phenomenon is studied for a particular class of coupled oscillatory systems exhibiting so-called simultaneously diagonalizable matrices. For three exemplary systems, namely, an electric circuit, a coupled system of oscillatory neurons, and a system of coupled oscillatory gene regulatory pathways, eigenvectors and amplitude equations are derived. It is shown that for all three systems, only the unstable eigenvectors and their amplitudes matter for the dynamics of the systems on their respective limit cycle attractors. A general class of coupled second-order dynamical oscillators is presented in which stable limit cycles emerging via Hopf bifurcations are solely specified by appropriately defined unstable eigenvectors and their amplitudes. While the eigenvectors determine the orientation of limit cycles in state spaces, the amplitudes determine the evolution of states along those limit cycles. In doing so, it is shown that the unstable eigenvectors define reduced amplitude spaces in which the relevant long-term dynamics of the systems under consideration takes place. Several generalizations are discussed. First, if stable and unstable system parts exhibit a slow-fast dynamics, the fast variables may be eliminated and approximative descriptions of the emerging limit cycle dynamics in reduced amplitude spaces may be again obtained. Second, the principle of reduced amplitude spaces holds not only for coupled second-order oscillators, but can be applied to coupled third-order and higher order oscillators. Third, the possibility to apply the approach to multifrequency limit cycle attractors and other types of attractors is discussed

    Oscillatory nonequilibrium Nambu systems: the canonical-dissipative Yamaleev oscillator

    No full text
    We study the emergence of oscillatory self-sustained behavior in a nonequilibrium Nambu system that features an exchange between different kinetical and potential energy forms. To this end, we study the Yamaleev oscillator in a canonical-dissipative framework. The bifurcation diagram of the nonequilibrium Yamaleev oscillator is derived and different bifurcation routes that are leading to limit cycle dynamics and involve pitchfork and Hopf bifurcations are discussed. Finally, an analytical expression for the probability density of the stochastic nonequilibrium oscillator is derived and it is shown that the shape of the density function is consistent with the oscillator properties in the deterministic case.Deposited by bulk impor
    corecore