3,429 research outputs found

    Yukawa terms in noncommutative SO(10) and E6 GUTs

    Full text link
    We propose a method for constructing Yukawa terms for noncommutative SO(10) and E6 GUTs, when these GUTs are formulated within the enveloping-algebra formalism. The most general noncommutative Yukawa term that we propose contains, at first order in thetamunu, the most general BRS invariant Yukawa contribution whose only dimensionful parameter is the noncommutativity parameter. This noncommutative Yukawa interaction is thus renormalisable at first order in thetamunu.Comment: 14 pages, no figure

    Multiple-event probability in general-relativistic quantum mechanics: a discrete model

    Full text link
    We introduce a simple quantum mechanical model in which time and space are discrete and periodic. These features avoid the complications related to continuous-spectrum operators and infinite-norm states. The model provides a tool for discussing the probabilistic interpretation of generally-covariant quantum systems, without the confusion generated by spurious infinities. We use the model to illustrate the formalism of general-relativistic quantum mechanics, and to test the definition of multiple-event probability introduced in a companion paper. We consider a version of the model with unitary time-evolution and a version without unitary time-evolutio

    Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect

    Full text link
    There is a common need in astroparticle experiments such as direct dark matter detection, 0{\nu}\b{eta}\b{eta} (double beta decay without emission of neutrinos) and Coherent Neutrino Nucleus Scattering experiments for light detectors with a very low energy threshold. By employing the Neganov-Luke Effect, the thermal signal of particle interactions in a semiconductor absorber operated at cryogenic temperatures, can be amplified by drifting the photogenerated electrons and holes in an electric field. This technology is not used in current experiments, in particular because of a reduction of the signal amplitude with time which is due to trapping of the charges within the absorber. We present here the first results of a novel type of Neganov-Luke Effect detector with an electric field configuration designed to improve the charge collection within the semiconductor.Comment: 6 pages, 5 figures, submitted to Journal of Low Temperature Physic

    Control of superluminal transit through a heterogeneous medium

    Full text link
    We consider pulse propagation through a two component composite medium (metal inclusions in a dielectric host) with or without cavity mirrors. We show that a very thin slab of such a medium, under conditions of localized plasmon resonance, can lead to significant superluminality with detectable levels of transmitted pulse. A cavity containing the heterogeneous medium is shown to lead to subluminal-to-superluminal transmission depending on the volume fraction of the metal inclusions. The predictions of phase time calculations are verified by explicit calculations of the transmitted pulse shapes. We also demonstrate the independence of the phase time on system width and the volume fraction under specific conditions.Comment: 21 Pages,5 Figures (Published in Journal of Modern Optics

    An experimental study of fog and cloud computing in CEP-based Real-Time IoT applications

    Get PDF
    Internet of Things (IoT) has posed new requirements to the underlying processing architecture, specially for real-time applications, such as event-detection services. Complex Event Processing (CEP) engines provide a powerful tool to implement these services. Fog computing has raised as a solution to support IoT real-time applications, in contrast to the Cloud-based approach. This work is aimed at analysing a CEP-based Fog architecture for real-time IoT applications that uses a publish-subscribe protocol. A testbed has been developed with low-cost and local resources to verify the suitability of CEP-engines to low-cost computing resources. To assess performance we have analysed the effectiveness and cost of the proposal in terms of latency and resource usage, respectively. Results show that the fog computing architecture reduces event-detection latencies up to 35%, while the available computing resources are being used more efficiently, when compared to a Cloud deployment. Performance evaluation also identifies the communication between the CEP-engine and the final users as the most time consuming component of latency. Moreover, the latency analysis concludes that the time required by CEP-engine is related to the compute resources, but is nonlinear dependent of the number of things connected
    • …
    corecore