3,781 research outputs found
Yukawa terms in noncommutative SO(10) and E6 GUTs
We propose a method for constructing Yukawa terms for noncommutative SO(10)
and E6 GUTs, when these GUTs are formulated within the enveloping-algebra
formalism. The most general noncommutative Yukawa term that we propose
contains, at first order in thetamunu, the most general BRS invariant Yukawa
contribution whose only dimensionful parameter is the noncommutativity
parameter. This noncommutative Yukawa interaction is thus renormalisable at
first order in thetamunu.Comment: 14 pages, no figure
Multiple-event probability in general-relativistic quantum mechanics: a discrete model
We introduce a simple quantum mechanical model in which time and space are
discrete and periodic. These features avoid the complications related to
continuous-spectrum operators and infinite-norm states. The model provides a
tool for discussing the probabilistic interpretation of generally-covariant
quantum systems, without the confusion generated by spurious infinities. We use
the model to illustrate the formalism of general-relativistic quantum
mechanics, and to test the definition of multiple-event probability introduced
in a companion paper. We consider a version of the model with unitary
time-evolution and a version without unitary time-evolutio
Cryogenic silicon detectors with implanted contacts for the detection of visible photons using the Neganov-Luke Effect
There is a common need in astroparticle experiments such as direct dark
matter detection, 0{\nu}\b{eta}\b{eta} (double beta decay without emission of
neutrinos) and Coherent Neutrino Nucleus Scattering experiments for light
detectors with a very low energy threshold. By employing the Neganov-Luke
Effect, the thermal signal of particle interactions in a semiconductor absorber
operated at cryogenic temperatures, can be amplified by drifting the
photogenerated electrons and holes in an electric field. This technology is not
used in current experiments, in particular because of a reduction of the signal
amplitude with time which is due to trapping of the charges within the
absorber. We present here the first results of a novel type of Neganov-Luke
Effect detector with an electric field configuration designed to improve the
charge collection within the semiconductor.Comment: 6 pages, 5 figures, submitted to Journal of Low Temperature Physic
Control of superluminal transit through a heterogeneous medium
We consider pulse propagation through a two component composite medium (metal
inclusions in a dielectric host) with or without cavity mirrors. We show that a
very thin slab of such a medium, under conditions of localized plasmon
resonance, can lead to significant superluminality with detectable levels of
transmitted pulse. A cavity containing the heterogeneous medium is shown to
lead to subluminal-to-superluminal transmission depending on the volume
fraction of the metal inclusions. The predictions of phase time calculations
are verified by explicit calculations of the transmitted pulse shapes. We also
demonstrate the independence of the phase time on system width and the volume
fraction under specific conditions.Comment: 21 Pages,5 Figures (Published in Journal of Modern Optics
An experimental study of fog and cloud computing in CEP-based Real-Time IoT applications
Internet of Things (IoT) has posed new requirements to the underlying processing architecture, specially for real-time applications, such as event-detection services. Complex Event Processing (CEP) engines provide a powerful tool to implement these services. Fog computing has raised as a solution to support IoT real-time applications, in contrast to the Cloud-based approach. This work is aimed at analysing a CEP-based Fog architecture for real-time IoT applications that uses a publish-subscribe protocol. A testbed has been developed with low-cost and local resources to verify the suitability of CEP-engines to low-cost computing resources. To assess performance we have analysed the effectiveness and cost of the proposal in terms of latency and resource usage, respectively. Results show that the fog computing architecture reduces event-detection latencies up to 35%, while the available computing resources are being used more efficiently, when compared to a Cloud deployment. Performance evaluation also identifies the communication between the CEP-engine and the final users as the most time consuming component of latency. Moreover, the latency analysis concludes that the time required by CEP-engine is related to the compute resources, but is nonlinear dependent of the number of things connected
- …