486 research outputs found

    Exploring short-term climate change effects on rangelands and broad-leaved forests by free satellite data in Aosta Valley (Northwest Italy)

    Get PDF
    Satellite remote sensing is a power tool for the long-term monitoring of vegetation. This work, with reference to a regional case study, investigates remote sensing potentialities for describing the annual phenology of rangelands and broad-leaved forests at the landscape level with the aim of detecting eventual effects of climate change in the Alpine region of the Aosta Valley (Northwest (NW) Italy). A first analysis was aimed at estimating phenological metrics (PMs) from satellite images time series and testing the presence of trends along time. A further investigation concerned evapotranspiration from vegetation (ET) and its variation along the years. Additionally, in both the cases the following meteorological patterns were considered: air temperature anomalies, precipitation trends and the timing of yearly seasonal snow melt. The analysis was based on the time series (TS) of different MODIS collections datasets together with Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS) collection obtained through Google Earth Engine. Ground weather stations data from the Centro Funzionale VdA ranging from 2000 to 2019 were used. In particular, the MOD13Q1 v.6, MOD16A2 and MOD10A1 v.6 collections were used to derive PMs, ET and snow cover maps. The SRTM (shuttle radar topography mission) DTM (digital terrain model) was also used to describe local topography while the Coordination of Information on the Environment (CORINE) land cover map was adopted to investigate land use classes. Averagely in the area, rangelands and broad-leaved forests showed that the length of season is getting longer, with a general advance of the SOS (start of the season) and a delay in the EOS (end of the season). With reference to ET, significant increasing trends were generally observed. The water requirement from vegetation appeared to have averagely risen about 0.05 Kg·m−2 (about 0.5%) per year in the period 2000–2019, for a total increase of about 1 Kg·m−2 in 20 years (corresponding to a percentage difference in water requirement from vegetation of about 8%). This aspect can be particularly relevant in the bottom of the central valley, where the precipitations have shown a statistically significant decreasing trend in the period 2000–2019 (conversely, no significant variation was found in the whole territory). Additionally, the snowpack timing persistence showed a general reduction trend. PMs and ET and air temperature anomalies, as well as snow cover melting, proved to have significantly changed their values in the last 20 years, with a continuous progressive trend. The results encourage the adoption of remote sensing to monitor climate change effects on alpine vegetation, with particular focus on the relationship between phenology and other abiotic factors permitting an effective technological transfer

    Mapping Ecological Focus Areas within the EU CAP Controls Framework by Copernicus Sentinel-2 Data

    Get PDF
    Greening is a Common Agricultural Policy (CAP) subsidy that ensures that all EU farmers receiving income support produce climate and environmental benefits as part of their farming activities. To receive greening support, it is mandatory for the farmer to carry out three agricultural practices that are considered environmentally and climate friendly: (a) crop diversification; (b) maintenance of permanent meadows and pastures; and (c) presence of an Ecological Focus Area (EFA). Contributions are delivered and monitored by paying agencies (PP) that ordinarily perform administrative checks and spot checks. The latter are provided through photo-interpretation of high-resolution satellite or aerial images and, in specific cases, through local ground checks (GC) as well. In this work, stimulated by the Piemonte Regional Agency for Payments in Agriculture (ARPEA), a prototype service to support PPs’ controls within the greening CAP framework was proposed with special concern for EFA detection. The proposed approach is expected to represent a valid alternative or supporting tool for GC. It relies on the analysis of NDVI time series derived from Copernicus Sentinel-2 data. The study was conducted in the provinces of Turin, Asti and Vercelli within the Piedmont Region (NW Italy), and over 12,500 EFA fields were assessed. Since the recent National Report No. 5465 stipulates that mowing and any other soil management operation is prohibited on set-aside land designated as an EFA during the reference period (RP) between 1st March and 30th June, a time series (TS) of NDVI in the same period was generated. Once averaged at plot level, NDVI trends were modelled by a first-order polynomial, and the correspondent statistics (namely, R2, MAE and maximum residual) was computed. These were assumed to play the role of discriminants in EFA detection based on a thresholding approach (Otsu’s method), calibrated with reference to the training dataset. The threshold satisfaction was therefore tested, and, depending on the number of satisfied thresholds out of the possible three, EFA and non-EFA plots were detected with a different degree of reliability. The correspondent EFA map was generated for the area of interest and validated according to GCs as provided by the ARPEA. The results showed an overall accuracy of 84%, indicating that the approach is promising. The authors retain that this procedure represents a valid alternative (or integrating) tool for ground controls by PPs

    SENTINEL-1 DATA TIME SERIES TO SUPPORT FOREST POLICE IN HARVESTINGS DETECTION

    Get PDF
    Abstract. Satellite remote sensing has long been used to monitor forest harvesting with accuracies appropriate for practical mapping across a wide range of forest types by using different sensors. Unfortunately, in Italy, most of the cuts take place in winter where the cloud cover is very high, making it impossible an early detection by optical data. In this framework, synthetic aperture radar (SAR) data such as Sentinel-1 (S1) allows a better land monitoring by penetrating cloud cover. In this work we tested some methods for time series breakpoint detection with the aim of mapping significant forest cover changes in 2019 over an Italian forested area. These maps can be useful tools to support the focusing of field surveys by forest police with the aim of increasing the monitorable areas and decreasing the related field survey costs. Four methods were proposed and compared based on the analysis of SAR polarimetric index time series (Cross Ratio index). In particular, adopted methods search for a breakpoint in the cross-ratio time series assuming it as moment after that forest canopy temporal behaviour significantly change. In general, high overall accuracy and user's accuracy were found for all methods while producer's accuracy and K values are lower denoting an underestimation of harvested areas by single method. Conversely, combining all methods into a final classification shows highest user's accuracy (> 0.9) in detecting forests harvestings when more than two classification methods were adopted

    A Sustainable Approach for upgrading geographic databases based on high resolution satellite imagery

    Get PDF
    The availability of high-resolution satellite images could be exploited for upgrading geographic databases at medium scales (1:5,000-1:25,000) as alternative to aerial photogrammetry. The paper presents a procedure to carry out this task which is based on an automatic image-to-image registration procedure of new satellite data to existing ortho-photomaps that have to be upgraded. In order to get a regularization of control points extracted in automatic way, a technique implementing a neural network algorithm is applied. Once an image has been georeferenced, this can be ortho-corrected thanks to a DTM (nowadays available in almost all developed countries). However, the product which is obtained so far is still a raster maps. To cope with the increasing need of vector data in geographic geographic databases, some tests performed on the extraction of features (buildings and roads) from real high-resolution satellite images have been performed and results are shown here. Finally, to complete the data acquisition process, the use of GPS-GIS data-logger receivers in differential mode is proposed
    • …
    corecore