10 research outputs found

    An EST-based analysis identifies new genes and reveals distinctive gene expression features of Coffea arabica and Coffea canephora

    Get PDF
    Background: Coffee is one of the world’s most important crops; it is consumed worldwide and plays a significant role in the economy of producing countries. Coffea arabica and C. canephora are responsible for 70 and 30% of commercial production, respectively. C. arabica is an allotetraploid from a recent hybridization of the diploid species, C. canephora and C. eugenioides. C. arabica has lower genetic diversity and results in a higher quality beverage than C. canephora. Research initiatives have been launched to produce genomic and transcriptomic data about Coffea spp. as a strategy to improve breeding efficiency. Results: Assembling the expressed sequence tags (ESTs) of C. arabica and C. canephora produced by the Brazilian Coffee Genome Project and the NestlĂ©-Cornell Consortium revealed 32,007 clusters of C. arabica and 16,665 clusters of C. canephora. We detected different GC3 profiles between these species that are related to their genome structure and mating system. BLAST analysis revealed similarities between coffee and grape (Vitis vinifera) genes. Using KA/KS analysis, we identified coffee genes under purifying and positive selection. Protein domain and gene ontology analyses suggested differences between Coffea spp. data, mainly in relation to complex sugar synthases and nucleotide binding proteins. OrthoMCL was used to identify specific and prevalent coffee protein families when compared to five other plant species. Among the interesting families annotated are new cystatins, glycine-rich proteins and RALF-like peptides. Hierarchical clustering was used to independently group C. arabica and C. canephora expression clusters according to expression data extracted from EST libraries, resulting in the identification of differentially expressed genes. Based on these results, we emphasize gene annotation and discuss plant defenses, abiotic stress and cup quality-related functional categories. Conclusion: We present the first comprehensive genome-wide transcript profile study of C. arabica and C. canephora, which can be freely assessed by the scientific community at http://www.lge.ibi.unicamp.br/ coffea. Our data reveal the presence of species-specific/prevalent genes in coffee that may help to explain particular characteristics of these two crops. The identification of differentially expressed transcripts offers a starting point for the correlation between gene expression profiles and Coffea spp. developmental traits, providing valuable insights for coffee breeding and biotechnology, especially concerning sugar metabolism and stress tolerance

    The Genome Sequence Of Leishmania (leishmania) Amazonensis: Functional Annotation And Extended Analysis Of Gene Models

    Get PDF
    We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3â€Č-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment. © The Author 2013.206567581(2010) Control of the Leishmaniasis WHOTechnical Report Series, , WHO. WHO Press: GenevaLainson, R., Shaw, J.J., (1987) The leishmaniases in biology and medicine. Evolution, classification and geographical distributionBates, P.A., Transmission of Leishmania metacyclic promastigotes by phlebotomine sand flies (2007) Int. J. Parasitol., 37, pp. 1097-1106Dedet, J.P., Pratlong, F., Lanotte, G., Ravel, C., Cutaneous leishmaniasis The parasite (1999) Clin. Dermatol., 17, pp. 261-268Murray, H.W., Berman, J.D., Davies, C.R., Saravia, N.G., Advances in leishmaniasis (2005) Lancet, 366, pp. 1561-1577Camara Coelho, L.I., Paes, M., Guerra, J.A., Characterization of Leishmania spp causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil (2011) Parasitol. Res., 108, pp. 671-677Silveira, F.T., Lainson, R., Corbett, C.E., Further observations on clinical, histopathological, and immunological features of borderline disseminated cutaneous leishmaniasis caused by Leishmania (Leishmania) amazonensis (2005) Mem Inst Oswaldo Cruz, 100, pp. 525-534Real, F., Mortara, R.A., The diverse and dynamic nature of Leishmania parasitophorous vacuoles studied by multidimensional imaging (2012) PLoS Negl. Trop. Dis., 6, pp. e1518Real, F., Pouchelet, M., Rabinovitch, M., Leishmania (L) amazonensis: Fusion between parasitophorous vacuoles in infected bone-marrow derived mousemacrophages (2008) Exp Parasitol., 119, pp. 15-23Alpuche-Aranda, C.M., Racoosin, E.L., Swanson, J.A., Miller, S.I., Salmonella stimulate macrophage macropinocytosis and persist within spacious phagosomes (1994) J. Exp. Med., 179, pp. 601-608Real, F., Mortara, R.A., Rabinovitch, M., Fusion between Leishmania amazonensis and Leishmania major parasitophorous vacuoles: Live imaging of coinfected macrophages (2010) PLoS Negl. Trop. Dis., 4, pp. e905Ndjamen, B., Kang, B.H., Hatsuzawa, K., Kima, P.E., Leishmania parasitophorous vacuoles interact continuously with the host cell's endoplasmic reticulumparasitophorous vacuoles are hybrid compartments (2010) Cell Microbiol., 12, pp. 1480-1494Clayton, C., Shapira, M., Post-Transcriptional regulation of gene expression in trypanosomes and leishmanias (2007) Mol. Biochem. Parasitol., 156, pp. 93-101Martinez-Calvillo, S., Yan, S., Nguyen, D., Fox, M., Stuart, K., Myler, P.J., Transcription of Leishmania major Friedlin chromosome 1 initiates in both directions within a single region (2003) Mol. Cell, 11, pp. 1291-1299Haile, S., Papadopoulou, B., Developmental regulation of gene expression in trypanosomatid parasitic protozoa (2007) Curr. Opin. Microbiol., 10, pp. 569-577Martinez-Calvillo, S., Vizuet-de-Rueda, J.C., Florencio- Martinez, L.E., Manning-Cela, R.G., Figueroa-Angulo, E.E., Gene expression in trypanosomatid parasites (2010) J. Biomed. Biotechnol., 2010, p. 525241Wincker, P., Ravel, C., Blaineau, C., The Leishmania genome comprises 36 chromosomes conserved across widely divergent human pathogenic species (1996) Nucleic Acids Res., 24, pp. 1688-1694Britto, C., Ravel, C., Bastien, P., Conserved linkage groups associated with large-scale chromosomal rearrangements between Old World and New World Leishmania genomes (1998) Gene, 222, pp. 107-117Peacock, C.S., Seeger, K., Harris, D., Comparative genomic analysis of three Leishmania species that cause diverse human disease (2007) Nat. Genet., 39, pp. 839-847Raymond, F., Boisvert, S., Roy, G., Genome sequencing of the lizard parasite Leishmania tarentolae reveals loss of genes associated to the intracellular stage of human pathogenic species (2012) Nucleic Acids Res., 40, pp. 1131-1147Rovai, L., Tripp, C., Stuart, K., Simpson, L., Recurrent polymorphisms in small chromosomes of Leishmania tarentolae after nutrient stress or subcloning (1992) Mol. Biochem. Parasitol., 50, pp. 115-125Ivens, A.C., Peacock, C.S., Worthey, E.A., The genome of the kinetoplastid parasite Leishmania major (2005) Science, 309, pp. 436-442Downing, T., Imamura, H., Decuypere, S., Whole genome sequencing of multiple Leishmania donovani clinical isolates provides insights into population structure and mechanisms of drug resistance (2011) Genome Res., 21, pp. 2143-2156Rogers, M.B., Hilley, J.D., Dickens, N.J., Chromosome and gene copy number variation allow major structural change between species and strains of Leishmania (2011) Genome Res., 21, pp. 2129-2142Smith, D.F., Peacock, C.S., Cruz, A.K., Comparative genomics: Fromgenotype to disease phenotype in the leishmaniases (2007) Int. J. Parasitol., 37, pp. 1173-1186Lye, L.F., Owens, K., Shi, H., Retention and loss of RNA interference pathways in trypanosomatid protozoans (2010) PLoS Pathog., 6, pp. e1001161Messing, J., Crea, R., Seeburg, P.H., A system for shotgun DNA sequencing (1981) Nucleic Acids Res., 9, pp. 309-321Zerbino, D.R., Birney, E., Velvet: Algorithms for de novo short read assembly using de Bruijn graphs (2008) Genome Res., 18, pp. 821-829Quinn, N.L., Levenkova, N., Chow, W., Assessing the feasibility of GS FLX Pyrosequencing for sequencing the Atlantic salmon genome (2008) BMC Genomics, 9, p. 404Sommer, D.D., Delcher, A.L., Salzberg, S.L., Pop, M., Minimus: A fast, lightweight genome assembler BMC Bioinformatics, 8, p. 64Pop, M., Kosack, D.S., Salzberg, S.L., Hierarchical scaffolding with Bambus (2004) Genome Res., 14, pp. 149-159Slater, G.S., Birney, E., Automated generation of heuristics for biological sequence comparison (2005) BMC Bioinformatics, 6, p. 31Salzberg, S.L., Delcher, A.L., Kasif, S., White, O., Microbial gene identification using interpolated Markov models (1998) Nucleic Acids Res., 26, pp. 544-548Lomsadze, A., Ter-Hovhannisyan, V., Chernoff, Y.O., Borodovsky, M., Gene identification in novel eukaryotic genomes by self-Training algorithm (2005) Nucleic Acids Res., 33, pp. 6494-6506Haas, B.J., Salzberg, S.L., Zhu, W., Automated eukaryotic gene structure annotation using EVidence Modeler and the program to assemble spliced alignments (2008) Genome Biol., 9, pp. R7Koski, L.B., Gray, M.W., Lang, B.F., Burger, G., AutoFACT: An automatic functional annotation and classification tool (2005) BMC Bioinformatics, 6, p. 151Suzek, B.E., Huang, H., McGarvey, P., Mazumder, R., Wu, C.H., UniRef: Comprehensive and non-redundant UniProt reference clusters (2007) Bioinformatics, 23, pp. 1282-1288Marchler-Bauer, A., Bryant, S.H., CD-Search: Protein domain annotations on the fly (2004) Nucleic Acids Res., 32, pp. W327-W331Bateman, A., Birney, E., Cerruti, L., The Pfam protein families database (2002) Nucleic Acids Res., 30, pp. 276-280Kanehisa, M., Goto, S., KEGG: Kyoto encyclopedia of genes and genomes (2000) Nucleic Acids Res., 28, pp. 27-30Chen, F., Mackey, A.J., Stoeckert, C.J., Jrand Roos, D.S., OrthoMCL-DB: Querying a comprehensive multi-species collection of ortholog groups (2006) Nucleic Acids Res., 34, pp. D363-D368Chen, F., Mackey, A.J., Vermunt, J.K., Roos, D.S., Assessing performance of orthology detection strategies applied to eukaryotic genomes (2007) PLoS One, 2, pp. e383Quinlan, A.R., Hall, I.M., BEDTools: A flexible suite of utilities for comparing genomic features (2010) Bioinformatics, 26, pp. 841-842Sharp, P.M., Li, W.H., The codon adaptation index - A measure of directional synonymous codon usage bias, and its potential applications (1987) Nucleic Acids Res., 15, pp. 1281-1295Sharp, P.M., Tuohy, T.M., Mosurski, K.R., Codon usage in yeast: Cluster analysis clearly differentiates highly and lowly expressed genes (1986) Nucleic Acids Res., 14, pp. 5125-5143Comeron, J.M., Aguade, M., An evaluation of measures of synonymous codon usage bias (1998) J. Mol. Evol., 47, pp. 268-274Aslett, M., Aurrecoechea, C., Berriman, M., TriTrypDB: A functional genomic resource for the Trypanosomatidae (2010) Nucleic Acids Res., 38, pp. D457-D462Drummond, A.J., Ashton, B., Buxton, S., (2011) Geneious v5.6.3., , http://www.geneious.com/, (June 2012, date last accessed)Edgar, R.C., MUSCLE: Multiple sequence alignment with high accuracy and high throughput (2004) Nucleic Acids Res., 32, pp. 1792-1797Ronquist, F., Huelsenbeck, J.P., MrBayes 3: Bayesian phylogenetic inference under mixed models (2003) Bioinformatics, 19, pp. 1572-1574Whelan, S., Goldman, N., A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach (2001) Mol. Biol. Evol., 18, pp. 691-699Emanuelsson, O., Brunak, S., Von Heijne, G., Nielsen, H., Locating proteins in the cell using TargetP SignalP and related tools Nat. Protoc., 2, pp. 953-971Bendtsen, J.D., Jensen, L.J., Blom, N., Von Heijne, G., Brunak, S., Feature-based prediction of nonclassical and leaderless protein secretion (2004) Protein Eng Des Sel: PEDS, 17, pp. 349-356Paape, D., Barrios-Llerena, M.E., Le Bihan, T., Mackay, L., Aebischer, T., Gel free analysis of the proteome of intracellular Leishmania mexicana (2010) Mol. Biochem. Parasitol., 169, pp. 108-114Lowe, T.M., Eddy, S.R., TRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence (1997) Nucleic Acids Res., 25, pp. 955-964Castillo-Ramirez, S., Vazquez-Castellanos, J.F., Gonzalez, V., Cevallos, M.A., Horizontal gene transfer and diverse functional constrains within a common replication- partitioning system in Alphaproteobacteria: The repABC operon (2009) BMC Genomics, 10, p. 536Bastien, P., Blaineau, C., Pages, M., Leishmania: Sex, lies and karyotype (1992) Parasitol. Today, 8, pp. 174-177Mannaert, A., Downing, T., Imamura, H., Dujardin, J.C., Adaptivemechanisms in pathogens: Universal aneuploidy in Leishmania (2012) Trends Parasitol., 28, pp. 370-376Sterkers, Y., Lachaud, L., Bourgeois, N., Crobu, L., Bastien, P., Pages, M., Novel insights intogenomeplasticity in Eukaryotes: Mosaic aneuploidy in Leishmania (2012) Mol. Microbiol., 86, pp. 15-23Ning, Z., Cox, A.J., Mullikin, J.C., SSAHA: A fast search method for large DNA databases (2001) Genome Res., 11, pp. 1725-1729Gentil, L.G., Lasakosvitsch, F., Silveira, J.F., Santos, M.R., Barbieri, C.L., Analysis and chromosomal mapping of Leishmania (Leishmania) amazonensis amastigote expressed sequence tags (2007) Mem Inst Oswaldo Cruz, 102, pp. 707-711Hutson, S., Structure and function of branched chain aminotransferases (2001) Prog Nucleic Acid Res. Mol. Biol., 70, pp. 175-206Ginger, M.L., Chance, M.L., Goad, L.J., Elucidation of carbon sources used for the biosynthesis of fatty acids and sterols in the trypanosomatid Leishmania mexicana (1999) Biochem. J., 342, pp. 397-405Arruda, D.C., D'Alexandri, F.L., Katzin, A.M., Uliana, S.R., Leishmania amazonensis: Biosynthesis of polyprenols of 9 isoprene units by amastigotes Exp. Parasitol., 118, pp. 624-628Neubert, T.A., Gottlieb, M., An inducible 30- nucleotidase/nuclease from the trypanosomatid Crithidia luciliae Purification and characterization (1990) J. Biol. Chem., 265, pp. 7236-7242Paletta-Silva, R., Vieira, D.P., Vieira-Bernardo, R., Leishmania amazonensis: Characterization of an ecto-30-nucleotidase activity and its possible role in virulence (2011) Exp Parasitol., 129, pp. 277-283Holmgren, A., Lu., J., Thioredoxin and thioredoxin reductase: Current research with special reference to human disease, Biochem (2010) Biophys. Res. Commun., 396, pp. 120-124Scott, P., Sher, A., A spectrum in the susceptibility of leishmanial strains to intracellular killing by murine macrophages (1986) J. Immunol., 136, pp. 1461-1466Krauth-Siegel, R.L., Comini, M.A., Redox control in trypanosomatids, parasitic protozoa with trypanothione- based thiol metabolism (2008) Biochim Biophys. Acta, 1780, pp. 1236-1248De Souza Carmo, E.V., Katz, S., Barbieri, C.L., Neutrophils reduce the parasite burden in Leishmania (Leishmania) amazonensis-infected macrophages (2010) PLoS One, 5, pp. e13815Asato, Y., Oshiro, M., Myint, C.K., Phylogenic analysis of the genus Leishmania by cytochrome b gene sequencing (2009) Exp. Parasitol., 121, pp. 352-361Fraga, J., Montalvo, A.M., DeDoncker, S., Dujardin, J.C., Van Der Auwera, G., Phylogeny of Leishmania species based on the heat-shock protein 70 gene (2010) Infect Genet. Evol., 10, pp. 238-245Rochette, A., McNicoll, F., Girard, J., Characterization and developmental gene regulation of a large gene family encoding amastin surface proteins in Leishmania spp (2005) Mol. Biochem. Parasitol., 140, pp. 205-220Jackson, A.P., The evolution of amastin surface glycoproteins in trypanosomatid parasites (2010) Mol. Biol. Evol., 27, pp. 33-45Cruz, M.C., Souza-Melo, N., Da Silva, C.V., Trypanosomacruzi: Role of delta-Amastinonextracellular amastigote cell invasion and differentiation (2012) PLoS One, 7, pp. e51804Stober, C.B., Lange, U.G., Roberts, M.T., From genome to vaccines for leishmaniasis: Screening 100 novel vaccine candidates against murine Leishmania major infection (2006) Vaccine, 24, pp. 2602-2616Rafati, S., Hassani, N., Taslimi, Y., Movassagh, H., Rochette, A., Papadopoulou, B., Amastin peptide-binding antibodies as biomarkers of active human visceral leishmaniasis (2006) Clin. Vaccine Immunol., 13, pp. 1104-1110Salotra, P., Duncan, R.C., Singh, R., Subba Raju, B.V., Sreenivas, G., Nakhasi, H.L., Upregulation of surface proteins in Leishmania donovani isolated from patients of post kala-Azar dermal leishmaniasis (2006) Microbes Infect., 8, pp. 637-644Rochette, A., Raymond, F., Ubeda, J.M., Genome-wide gene expression profiling analysis of Leishmania major and Leishmania infantum developmental stages reveals substantial differences between the two species (2008) BMC Genomics, 9, p. 255Azizi, H., Hassani, K., Taslimi, Y., Najafabadi, H.S., Papadopoulou, B., Rafati, S., Searching for virulence factors in the non-pathogenic parasite to humans Leishmania tarentolae (2009) Parasitology, 136, pp. 723-735Naderer, T., McConville, M.J., The Leishmaniamacrophage interaction: A metabolic perspective (2008) Cell Microbiol., 10, pp. 301-308De Souza Leao, S., Lang, T., Prina, E., Hellio, R., Antoine, J.C., Intracellular Leishmania amazonensis amastigotes internalize and degrade MHC class II molecules of their host cells (1995) J. Cell Sci., 108, pp. 3219-3231Silverman, J.M., Chan, S.K., Robinson, D.P., Proteomic analysis of the secretome of Leishmania donovani (2008) Genome Biol., 9, pp. R35Mouchess, M.L., Arpaia, N., Souza, G., Transmembrane mutations in Toll-like receptor 9 bypass the requirement for ectodomain proteolysis and induce fatal inflammation (2011) Immunity, 35, pp. 721-732Tuon, F.F., Fernandes, E.R., Pagliari, C., Duarte, M.I., Amato, V.S., The expression of TLR9 in human cutaneous leishmaniasis is associated with granuloma (2010) Parasite Immunol., 32, pp. 769-772Abou Fakher, F.H., Rachinel, N., Klimczak, M., Louis, J., Doyen, N., TLR9-dependent activation of dendritic cells byDNA fromLeishmania major favors Th1 cell development and the resolution of lesions (2009) J. Immunol., 182, pp. 1386-1396Carvalho, L.P., Petritus, P.M., Trochtenberg, A.L., Lymph node hypertrophy following Leishmania major infection is dependent on TLR9 (2012) J. Immunol., 188, pp. 1394-1401Favali, C., Tavares, N., Clarencio, J., Barral, A., Barral- Netto, M., Brodskyn, C., Leishmania amazonensis infection impairs differentiation and function of human dendritic cells (2007) J. Leukoc. Biol., 82, pp. 1401-1406Lezama-Davila, C.M., Isaac-Marquez, A.P., Systemic cytokine response in humans with chiclero's ulcers (2006) Parasitol Res., 99, pp. 546-553Linares, E., Augusto, O., Barao, S.C., Giorgio, S., Leishmania amazonensis infection does not inhibit systemic nitric oxide levels elicited by lipopolysaccharide in vivo (2000) J. Parasitol., 86, pp. 78-8

    The Roles Of Auxin During Plant-microbe Interactions

    No full text
    Among all the phytohormones, auxin likely plays the most roles in plant physiology. With an intricate biosynthesis pathway and a complex gene signaling cascade, auxin is involved in many biological processes, including plant growth and responses against potential pathogens. It has been extensively documented that some microorganisms are capable of synthesizing this phytohormone, especially indole-3-acetic acid (IAA), the major naturally occurring auxin. In an environmental scenario consisting of bacteria and fungi interacting with plants, the production of auxin by such microorganisms may lead to hormonal imbalances in the host. This disturbance in plant hormonal status can modulate plant metabolism and defense systems, favoring symbiosis or pathogenesis. The basic mechanism of IAA as a modulator of plant gene expression is well understood, and new evidence about the mechanisms by which microbes affect plant auxin activities is now emerging. This review focuses on the effects of auxins produced by microorganisms during plant-microbe interactions. The routes of auxin biosynthesis in bacteria and fungi are described for some organisms. We also give examples of the effects of microbe-produced auxin in symbiotic and pathogenic events and describe how plants modulate IAA signaling to counteract infection by biotrophic pathogens. © 2012 Nova Science Publishers, Inc. All rights reserved.3151Abreu, M.E., MunnĂ©-Bosch, S., Salicylic acid deficiency in NahG transgenic lines and sid2 mutants increases seed yield in the annual plant Arabidopsis thaliana (2009) Journal of Experimental Botany, 60, pp. 1261-1271Arteca, R.N., Arteca, J.M., Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants (2008) Journal of Experimental Botany, 59, pp. 3019-3026Bari, R., Jones, J.D., Role of plant hormones in plant defence responses (2009) Plant Mol Biol, 69, pp. 473-488Barker, S.J., Tagu, D., The Roles of Auxins and Cytokinins in Mycorrhizal Symbioses (2000) Journal of Plant Growth Regulation, 19, pp. 144-154Bashan, Y., Holguin, G., Azospirillum-plant relationships: environmental and physiological advances (1990-1996) (1997) Canadian Journal of Microbiology, 43, pp. 103-121Basse, C.W., Lottspeich, F., Steglich, W., Kahmann, R., Two potential indole-3-acetaldehyde dehydrogenases in the phytopathogenic fungus Ustilago maydis (1996) European Journal of Biochemistry, 242, pp. 648-656Berg, G., Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture (2009) Applied Microbiology and Biotechnology, 84, pp. 11-18Bianco, C., Imperlini, E., Calogero, R., Senatore, B., Amoresano, A., Carpentieri, A., Pucci, P., Defez, R., Indole-3-acetic acid improves Escherichia coli defences to stress (2006) Archives of Microbiology, 185, pp. 373-382Bölker, M., Basse, C.W., Schirawski, J., Ustilago maydis secondary metabolism-from genomics to biochemistry (2008) Fungal Genetics and Biology, 45 (SUPPL. 1), pp. S88-93Cernadas, R.A., Camillo, L.R., Benedetti, C.E., Transcriptional analysis of the sweet orange interaction with the citrus canker pathogens Xanthomonas axonopodis pv. citri and Xanthomonas axonopodis pv. aurantifolii (2008) Molecular Plant Pathology, 9, pp. 609-631Chung, K.R., Shilts, T., ErtĂŒrk, U., Timmer, L.W., Ueng, P.P., Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus (2003) FEMS Microbiology Letters, 226, pp. 23-30Darwin, C., The power of movement in plants (1880), London: John MurrayDing, X., Cao, Y., Huang, L., Zhao, J., Xu, C., Li, X., Wang, S., Activation of the indole-3-acetic acid-amido synthetase GH3-8 suppresses expansin expression and promotes salicylate-and jasmonate-independent basal immunity in rice (2008) The Plant Cell, 20, pp. 228-240Dobbelaere, S., Croonenborghs, A., Thys, A., Vande Broek, A., Vanderleyden, J., Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat (1999) Plant and Soil, 212, pp. 155-164Felten, J., Kohler, A., Morin, E., Bhalerao, R.P., Palme, K., Martin, F., Ditengou, F.A., LeguĂ©, V., The ectomycorrhizal fungus Laccaria bicolor stimulates lateral root formation in poplar and Arabidopsis through auxin transport and signaling (2009) Plant Physiology, 151, pp. 1991-2005Felten, J., LeguĂ©, V., Ditengou, F.A., Lateral root stimulation in the early interaction between Arabidopsis thaliana and the ectomycorrhizal fungus Laccaria bicolor is fungal auxin the trigger? (2010) Plant Signaling and Behavior, 5, pp. 864-867Fu, J., Liu, H., Li, Y., Yu, H., Li, X., Xiao, J., Wang, S., Manipulating broad-spectrum disease resistance by suppressing pathogen-induced auxin accumulation in rice (2011) Plant Physiology, 155, pp. 589-602Fukuhara, H., Minakawa, Y., Akao, S., Minamisawa, K., The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation (1994) Plant Cell and Physiology, 35, pp. 1261-1265Ghosh, S., Basu, P.S., Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo (2006) Microbiological Research, 161, pp. 362-366Gruen, H.E., Auxins and fungi (1959) Annual Review of Plant Physiology, 10, pp. 405-440Grunewald, W., Cannoot, B., Friml, J., Gheysen, G., Parasitic nematodes modulate PIN-mediated auxin transport to facilitate infection (2009) PLoS Pathogens, 5 (1), pp. e1000266KĂ€mper, J., Kahmann, R., Bölker, M., Ma, L.J., Brefort, T., Saville, B.J., Banuett, F., Birren, B.W., Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis (2006) Nature, 444, pp. 97-101Karabaghli, C., Frey-Klett, P., Sotta, B., Bonnet, M., Le Tacon, F., Vitro effects of Laccaria bicolor S238N and Pseudomonas fluorescens strain BBc6 on rooting of de-rooted shoot hypocotyls of Norway spruce (1998) Tree Physiology, 18, pp. 103-111Kazan, K., Manners, J.M., Linking development to defense: auxin in plant-pathogen interactions (2009) Trends in Plant Science, 14, pp. 373-382Kilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves (2007) FEMS Microbiology Letters, 274, pp. 238-244Kunkel, B.N., Brooks, D.M., Cross talk between signaling pathways in pathogen defense (2002) Current Opinion in Plant Biology, 5, pp. 325-331Lambrecht, M., Okon, Y., Vande Broek, A., Vanderleyden, J., Indole-3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions (2000) Trends in Microbiology, 8, pp. 298-300Liu, P., Nester, E.W., Indoleacetic acid, a product of transferred DNA, inhibits vir gene expression and growth of Agrobacterium tumefaciens C58 (2006) Proceedings of the National Academy of Sciences of the United States of America, 103, pp. 4658-4662Llorente, F., Muskett, P., SĂĄnchez-Vallet, A., LĂłpez, G., Ramos, B., SĂĄnchez-RodrĂ­guez, C., JordĂĄ, L., Molina, A., Repression of the auxin response pathway increases Arabidopsis susceptibility to necrotrophic fungi (2008) Molecular Plant, 1, pp. 496-509LĂłpez, M.A., Bannenberg, G., Castresana, C., Controlling hormone signaling is a plant and pathogen challenge for growth and survival (2008) Current Opinion in Chemical Biology, 11, pp. 420-427Maor, R., Haskin, S., Levi-Kedmi, H., Sharon, A., Planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene (2004) Applied and Environmental Microbiology, 70, pp. 1852-1854Marois, E., Van den Ackerveken, G., Bonas, U., The Xanthomonas type III effector protein AvrBs3 modulates plant gene expression and induces cell hypertrophy in the susceptible host (2002) Molecular Plant Microbe Interactions, 15, pp. 637-646Mathesius, U., Auxin: at the root of nodule development? (2008) Functional Plant Biology, 35, pp. 651-668McQueen-Mason, S., Durachko, D.M., Cosgrove, D.J., Two endogenous proteins that induce cell wall extension in plants (1992) The Plant Cell, 4, pp. 1425-1433Mondego, J.M., Carazzolle, M.F., Costa, G.G., Formighieri, E.F., Parizzi, L.P., Rincones, J., Cotomacci, C., Pereira, G.A., A genome survey of Moniliophthora perniciosa gives new insights into Witches' Broom Disease of cacao (2008) BMC Genomics, 9, p. 548Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439Nielsen, N., Materials which hasten the growth of Avena coleoptiles (1928) Planta, 6, pp. 376-378Normanly, J., Approaching cellular and molecular resolution of auxin biosynthesis and metabolism (2010) Cold Spring Harbor Perspectives in Biology, 2 (1), pp. a001594Park, J.-E., Park, J.-Y., Kim, Y.-S., Staswick, P.E., Jeon, J., Yun, J., Kim, S.-Y., Park, C.-M., GH3-mediated auxin homeostasis links growth regulation with stress adaptation response in Arabidopsis (2007) The Journal of Biological Chemistry, 282, pp. 10036-10046Patten, C.L., Glick, B.R., Bacterial biosynthesis of indole-3-acetic acid (1996) Canadian Journal of Microbiology, 42 (3), pp. 207-220Perley, J.E., Stowe, B.B., On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine (1966) Plant Physiology, 41, pp. 234-237Persello-Cartieaux, F., Nussaume, L., Robaglia, C., Tales from the underground: molecular plant-rhizobacteria interactions (2003) Plant, Cell and Environment, 26, pp. 189-199Pii, Y., Crimi, M., Cremonese, G., Spena, A., Pandolfini, T., Auxin and nitric oxide control indeterminate nodule formation (2007) BMC Plant Biology, 7, p. 21Prusty, R., Hunter, A., Kashpur, O., Normanly, J., Aberrant synthesis of Indole-3-acetic Acid in Saccharomyces cerevisiae triggers morphogenic transition, a virulence trait of pathogenic fungi (2010) Genetics, 220, pp. 211-220Prusty, R., Grisafi, P., Fink, G.R., The plant hormone indoleacetic acid induces invasive growth in Saccharomyces cerevisiae (2004) Proceedings of the National Academy of Sciences of the United States of America, 101, pp. 4153-4157Reineke, G., Heinze, B., Schirawski, J., Buettner, R., Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue (2008) Molecular Plant Pathology, 9, pp. 339-355Remans, R., Spaepen, S., Vanderleyden, J., Auxin signaling in plant defense (2006) Science, 313, p. 171Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J.D.G., Pathological hormone imbalances (2007) Current Opinion in Plant Biology, 10, pp. 372-379Robinette, D., Matthysse, A.G., Inhibition by Agrobacterium tumefaciens and Pseudomonas savastanoi of development of the hypersensitive response elicited by Pseudomonas syringae pv. phaseolicola (1990) Journal of Bacteriology, 172, pp. 5742-5749Robinson, M., Riov, J., Sharon, A., Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene (1998) Applied and Environmental Microbiology, 64, pp. 5030-5032Santner, A., Calderon-Villalobos, L., Estelle, M., Plant hormones are versatile chemical regulators of plant growth (2009) Nature Chemical Biology, 5, pp. 301-307Spaepen, S., Vanderleyden, J., Auxin and plant-microbe interactions (2011) Cold Spring Harbor Perspectives in Biology, 1 (4), p. 3Spaepen, S., Vanderleyden, J., Remans, R., Indole-3-acetic acid in microbial and microorganism-plant signaling (2007) FEMS Microbiological Reviews, 31, pp. 425-448Splivallo, R., Fischer, U., Göbel, C., Feussner, I., Karlovsky, P., Truffles regulate plant root morphogenesis via the production of auxin and ethylene (2009) Plant Physiology, 150, pp. 2018-2029Staswick, P.E., Serban, B., Rowe, M., Tiryaki, I., Maldonado, M.T., Maldonado, M.C., Suza, W., Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole-3-acetic acid (2005) The Plant Cell, 17, pp. 616-627Steenhoudt, O., Vanderleyden, J., Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects (2000) FEMS Microbiological Reviews, 24, pp. 487-506Stepanova, A.N., Robertson-Hoyt, J., Yun, J., Benavente, L.M., Xie, D.-Y., Dolezal, K., Schlereth, A., Alonso, J.M., TAA1-Mediated Auxin Biosynthesis Is Essential for Hormone Crosstalk and Plant Development (2008) Cell, 133, pp. 177-191Tanaka, E., Tanaka, C., Ishihara, A., Kuwahara, Y., Tsuda, M., Indole-3-acetic acid biosynthesis in Aciculosporium take, a causal agent of witches' broom of bamboo (2003) Journal of General Plant Pathology, 69, pp. 1-6Tiryaki, I., Staswick, P.E., An Arabidopsis Mutant Defective in Jasmonate Response Is Allelic to the Auxin-Signaling Mutant axr1 (2002) Plant Physiology, 130, pp. 887-894van Noorden, G.E., Kerim, T., Goffard, N., Wiblin, R., Pellerone, F.I., Rolfe, B.G., Mathesius, U., Overlap of proteome changes in Medicago truncatula in response to auxin and Sinorhizobium meliloti (2007) Plant Physiology, 144, pp. 1115-1131Vande Broek, A., Lambrecht, M., Eggermont, K., Vanderleyden, J., Auxins upregulate expression of the indole-3-pyruvate decarboxylase gene in Azospirillum brasilense (1999) Journal of Bacteriology, 181, pp. 1338-1342Vande Broek, A., Gysegom, P., Ona, O., Hendrickx, N., Prinsen, E., Impe, J.V., Vanderleyden, J., Transcriptional Analysis of the Azospirillum brasilense Indole-3-Pyruvate Decarboxylase Gene and Identification of a cis-Acting Sequence Involved in Auxin Responsive Expression (2005) Molecular Plant Microbe Interactions, 18, pp. 311-323Vandeputte, O., Oden, S., Mol, A., Vereecke, D., Goethals, K., El Jaziri, M., Prinsen, E., Biosynthesis of auxin by the gram-positive phytopathogen Rhodococcus fascians is controlled by compounds specific to infected plant tissues (2005) Applied and Environmental Microbiology, 71, pp. 1169-1177Verstrepen, K., Klis, F., Flocculation, adhesion and biofilm formation in yeasts (2006) Molecular Microbiology, 60, pp. 5-15Wang, D., Pajerowska-Mukhtar, K., Culler, A.H., Dong, X., Salicylic acid inhibits pathogen growth in plants through repression of the auxin signaling pathway (2007) Current Biology, 17, pp. 1784-1790Woltering, E.J., Balk, P., Nijenhuis-Devries, M., Faivre, M., Ruys, G., Somhorst, D., Philosoph-Hadas, S., Friedman, H., An auxin-responsive 1-aminocyclopropane-1-carboxylate synthase is responsible for differential ethylene production in gravistimulated Antirrhinum majus L. flower stems (2005) Planta, 220, pp. 403-413Woodward, A.W., Bartel, B., Auxin: Regulation, action, and interaction (2005) Annals of Botany, 95, pp. 707-735Zambryski, P., Tempe, J., Schell, J., Transfer and function of T-DNA genes from Agrobacterium Ti-plasmid and Ri-plasmid in plants (1989) Cell, 56, pp. 193-201Yang, S., Zhang, Q., Guo, J., Charkowski, A.O., Glick, B.R., Ibekwe, A.M., Cooksey, D.A., Yang, C.-H., Global effect of indole-3-acetic acid biosynthesis on multiple virulence factors of Erwinia chrysanthemi 3937 (2007) Applied and Environmental Microbiology, 73, pp. 1079-108

    Genomics, Transcriptomics, And Beyond: The Fifteen Years Of Cacao’s Witches’ Broom Disease Genome Project

    No full text
    Cacao production in Brazil was severely affected by the outbreak of witches’ broom disease (WBD) in the late 1980s. WBD is caused by the basidiomycete fungus Moniliophthora perniciosa, a hemibiotrophic pathogen that displays an uncommonly long-lasting biotrophic stage during which the host cacao suffers intense morphologic alterations in the infected shoots, giving rise to “green brooms.” Two months after infection, the fungus becomes necrotrophic resulting in the necrosis and destruction of the infected tissues that turn into a “dry broom.” During the last 15 years, the knowledge of this devastating and intriguing disease has been growing due to initiatives such as the WBD genome project. By using genomics and transcriptomics as tools to obtain insights about this disease, the WBD project has been elucidating the biochemistry and physiology of both plant host and pathogen, paving the way for practical applications to combat the fungus. In this chapter we present an overview of progress in the understanding of M. perniciosa genetics and the molecular mechanisms governing WBD, provide a model for the M. perniciosa–cacao interaction, and point to new directions to fight this disease. © Springer International Publishing Switzerland 2016.17921

    Novel Receptor-like Kinases In Cacao Contain Pr-1 Extracellular Domains

    No full text
    Members of the pathogenesis-related protein 1 (PR-1) family are well-known markers of plant defence responses, forming part of the arsenal of the secreted proteins produced on pathogen recognition. Here, we report the identification of two cacao (Theobroma cacaoL.) PR-1s that are fused to transmembrane regions and serine/threonine kinase domains, in a manner characteristic of receptor-like kinases (RLKs). These proteins (TcPR-1f and TcPR-1g) were named PR-1 receptor kinases (PR-1RKs). Phylogenetic analysis of RLKs and PR-1 proteins from cacao indicated that PR-1RKs originated from a fusion between sequences encoding PR-1 and the kinase domain of a LecRLK (Lectin Receptor-Like Kinase). Retrotransposition marks surround TcPR-1f, suggesting that retrotransposition was involved in the origin of PR-1RKs. Genes with a similar domain architecture to cacao PR-1RKs were found in rice (Oryza sativa), barrel medic (Medicago truncatula) and a nonphototrophic bacterium (Herpetosiphon aurantiacus). However, their kinase domains differed from those found in LecRLKs, indicating the occurrence of convergent evolution. TcPR-1g expression was up-regulated in the biotrophic stage of witches' broom disease, suggesting a role for PR-1RKs during cacao defence responses. We hypothesize that PR-1RKs transduce a defence signal by interacting with a PR-1 ligand. © 2013 BSPP AND JOHN WILEY & SONS LTD.146602609Afoakwa, E.O., Paterson, A., Fowler, M., Ryan, A., Flavor formation and character in cocoa and chocolate: a critical review (2008) Crit. Rev. Food Sci. Nutr., 48, pp. 840-857Afzal, A.J., Wood, A.J., Lightfoot, D.A., Plant receptor-like serine threonine kinases: roles in signaling and plant defense (2008) Mol. Plant-Microbe Interact., 21, pp. 507-517Aime, M.C., Phillips-Mora, W., The causal agents of witches' broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Boller, T., Felix, G., A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors (2009) Annu. Rev. Plant Biol., 60, pp. 379-406Cantacessi, C., Campbell, B.E., Visser, A., Geldhof, P., Nolan, M.J., Nisbet, A.J., Matthews, J.B., Gasser, R.B., A portrait of the 'SCP/TAPS' proteins of eukaryotes-developing a framework for fundamental research and biotechnological outcomes (2009) Biotechnol. Adv., 27, pp. 376-388Chen, X., Shang, J., Chen, D., Lei, C., Zou, Y., Zhai, W., Liu, G., Zhu, L., A B-lectin receptor kinase gene conferring rice blast resistance (2006) Plant J., 46, pp. 794-804Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., NĂŒrnberger, T., Jones, J.D., Felix, G., Boller, T., A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence (2007) Nature, 448, pp. 497-500Dardick, C., Chen, J., Richter, T., Ouyang, S., Ronald, P., The rice kinase database. A phylogenomic database for the rice kinome (2007) Plant Physiol., 143, pp. 579-586Diener, A.C., Ausubel, F.M., Resistance to Fusarium oxysporum 1, a dominant Arabidopsis disease-resistance gene, is not race specific (2005) Genetics, 171, pp. 305-321Escobar-Restrepo, J.M., Huck, N., Kessler, S., Gagliardini, V., Gheyselinck, J., Yang, W.C., Grossniklaus, U., The FERONIA receptor-like kinase mediates male-female interactions during pollen tube reception (2007) Science, 317, pp. 656-660Evans, H.C., Cacao diseases-the trilogy revisited (2007) Phytopathology, 97, pp. 1640-1643FernĂĄndez, C., Szyperski, T., BruyĂšre, T., Ramage, P., Mösinger, E., WĂŒthrich, K., NMR solution structure of the pathogenesis-related protein P14a (1997) J. Mol. Biol., 26, pp. 576-593Frias, G.A., Purdy, L.H., Schmidt, R.A., An inoculation method for evaluating resistance of cacao to Crinipellis perniciosa (1995) Plant Dis., 79, pp. 787-791Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H., CDART: protein homology by domain architecture (2002) Genome Res., 12, pp. 1619-1623Gibbs, G.M., Roelants, K., O'Bryan, M.K., The CAP superfamily: cysteine-rich secretory proteins, antigen 5, and pathogenesis-related 1 proteins-roles in reproduction, cancer, and immune defense (2008) Endocr. Rev., 29, pp. 865-897Gish, L.A., Clark, S.E., The RLK/Pelle family of kinases (2011) Plant J., 66, pp. 117-127Godiard, L., Sauviac, L., Torii, K.U., Grenon, O., Mangin, B., Grimsley, N.H., Marco, Y., ERECTA, an LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt (2003) Plant J., 36, pp. 353-365Gomez-Gomez, L., Boller, T., FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis (2000) Mol. Cell, 5, pp. 1003-1011Gough, J., Convergent evolution of domain architectures (is rare) (2005) Bioinformatics, 21, pp. 1464-1471Greeff, C., Roux, M., Mundy, J., Petersen, M., Receptor-like kinase complexes in plant innate immunity (2012) Front. Plant Sci., 3, p. 209Heese, A., Hann, D.R., Gimenez-Ibanez, S., Jones, A.M., He, K., Li, J., Schroeder, J.I., Rathjen, J.P., The receptor-like kinase SERK3/BAK1 is a central regulator of innate immunity in plants (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 12217-12222Jinn, T.L., Stone, J.M., Walker, J.C., HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission (2000) Genes Dev., 14, pp. 108-117Johnson, L.N., Noble, M.E., Owen, D.J., Active and inactive protein kinases: structural basis for regulation (1996) Cell, 85, pp. 149-158Jones, C.D., Custer, A.W., Begun, D.J., Origin and evolution of a chimeric fusion gene in Drosophila subobscura, D.madeirensis and D.guanche (2005) Genetics, 170, pp. 207-219Jurka, J., Repeats in genomic DNA: mining and meaning (1998) Curr. Opin. Struct. Biol., 8, pp. 333-337Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., Shibuya, N., Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor (2006) Proc. Natl. Acad. Sci. USA, 103, pp. 11086-11091Lee, S.W., Han, S.W., Sririyanum, M., Park, C.J., Seo, Y.S., Ronald, P.C., A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity (2009) Science, 326, pp. 850-853Lehti-Shiu, M.D., Zou, C., Hanada, K., Shiu, S.H., Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes (2009) Plant Physiol., 150, pp. 12-26Liu, B., Li, J.F., Ao, Y., Qu, J., Li, Z., Su, J., Zhang, Y., Wang, H.B., Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity (2012) Plant Cell, 24, pp. 3406-3419Long, M., Betran, E., Thornton, K., Wang, W., The origin of new genes: glimpses from the young and old (2003) Nat. Rev. Genet., 4, pp. 865-875Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D., Pereira, G.A., Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe? (2008) Mol. Plant Pathol., 9, pp. 577-588Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Shibuya, N., CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis (2007) Proc. Natl. Acad. Sci. USA, 104, pp. 19613-19618Monaghan, J., Zipfel, C., Plant pattern recognition receptor complexes at the plasma membrane (2012) Curr. Opin. Plant Biol., 15, pp. 349-357Morillo, S.A., Tax, F.E., Functional analysis of receptor-like kinases in monocots and dicots (2006) Curr. Opin. Plant Biol., 9, pp. 460-469Nakai, K., Horton, P., PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization (1999) Trends Biochem. Sci., 24, pp. 34-36Niderman, T., Genetet, I., BruyĂšre, T., Gees, R., Stintzi, A., Legrand, M., Fritig, B., Mösinger, E., Pathogenesis-related PR-1 proteins are antifungal. Isolation and characterization of three 14-kilodalton proteins of tomato and of a basic PR-1 of tobacco with inhibitory activity against Phytophthora infestans (1995) Plant Physiol., 108, pp. 17-27Nisole, S., Lynch, C., Stoye, J.P., Yap, M.W., A Trim5-cyclophilin A fusion protein found in owl monkey kidney cells can restrict HIV-1 (2004) Proc. Natl. Acad. Sci. USA, 101, pp. 13324-13328Oh, M.H., Wang, X., Kota, U., Goshe, M.B., Clouse, S.D., Huber, S.C., Tyrosine phosphorylation of the BRI1 receptor kinase emerges as a component of brassinosteroid signaling in Arabidopsis (2009) Proc. Natl. Acad. Sci. USA, 106, pp. 658-663Oh, M.H., Wang, X., Wu, X., Zhao, Y., Clouse, S.D., Huber, S.C., Autophosphorylation of Tyr-610 in the receptor kinase BAK1 plays a role in brassinosteroid signaling and basal defense gene expression (2010) Proc. Natl. Acad. Sci. USA, 107, pp. 17827-17832Purdy, L.H., Schmidt, R.A., Status of cacao witches' broom: biology, epidemiology, and management (1996) Annu. Rev. Phytopathol., 34, pp. 573-594Quevillon, E., Silventoinen, V., Pillai, S., Harte, N., Mulder, N., Apweiler, R., Lopez, R., InterProScan: protein domains identifier (2005) Nucleic Acids Res., 33, pp. W116-W120. , Web Server IssueRauscher, M., AdĂĄm, A.L., Wirtz, S., Guggenheim, R., Mendgen, K., Deising, H.B., PR-1 protein inhibits the differentiation of rust infection hyphae in leaves of acquired resistant broad bean (1999) Plant J., 19, pp. 625-633Roux, M., Schwessinger, B., Albrecht, C., Chinchilla, D., Jones, A., Holton, N., Malinovsky, F.G., Zipfel, C., The Arabidopsis leucine-rich repeat receptor-like kinases BAK1/SERK3 and BKK1/SERK4 are required for innate immunity to hemibiotrophic and biotrophic pathogens (2011) Plant Cell, 23, pp. 2440-2455Shiu, S.H., Bleecker, A.B., Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases (2001) Proc. Natl. Acad. Sci. USA, 98, pp. 10763-10768Shiu, S.H., Bleecker, A.B., Expansion of the receptor-like kinase/Pelle gene family and receptor-like proteins in Arabidopsis (2003) Plant Physiol., 132, pp. 530-543Shiu, S.H., Karlowski, W.M., Pan, R., Tzeng, Y.H., Mayer, K.F., Li, W.H., Comparative analysis of the receptor-like kinase family in Arabidopsis and rice (2004) Plant Cell, 16, pp. 1220-1234Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R., Higgins, D.G., Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega (2011) Mol. Syst. Biol., 7, p. 539Soria, J.V., ObtenciĂłn de clones de cacao por el mĂ©todo de Ă­ndices de selecciĂłn (1996) Turrialba, 16, pp. 119-124Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods (2011) Mol. Biol. Evol., 28, pp. 2731-2739Torii, K.U., Leucine-rich repeat receptor kinases in plants: structure, function, and signal transduction pathways (2004) Int. Rev. Cytol., 234, pp. 1-46Trotochaud, A.E., Jeong, S., Clark, S.E., CLAVATA3, a multimeric ligand for the CLAVATA1 receptor-kinase (2000) Science, 289, pp. 613-617Van Loon, L.C., Rep, M., Pieterse, C.M., Significance of inducible defense-related proteins in infected plants (2006) Annu. Rev. Phytopathol., 44, pp. 135-162Vello, F., Garcia, J.R., CaracterĂ­sticas das principais variedades de cacau cultivadas na Bahia (1971) Theobroma, 1, pp. 3-10Walker, J.C., Structure and function of the receptor-like protein kinases of higher plants (1994) Plant Mol. Biol., 26, pp. 1599-1609Wan, J., Zhang, X.C., Neece, D., Ramonell, K.M., Clough, S., Kim, S.Y., Stacey, M.G., Stacey, G., A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis (2008) Plant Cell, 20, pp. 471-481Wang, G., Ellendorff, U., Kemp, B., Mansfield, J.W., Forsyth, A., Mitchell, K., Bastas, K., Thomma, B., A genome-wide functional investigation into the roles of receptor-like proteins in Arabidopsis (2008) Plant Physiol., 147, pp. 503-517Wang, W., Zheng, H., Fan, C., Li, J., Shi, J., Cai, Z., Zhang, G., Wang, J., High rate of chimeric gene origination by retroposition in plant genomes (2006) Plant Cell, 18, pp. 1791-1802Wang, Z.-Y., Seto, H., Fujioka, S., Yoshida, S., Chory, J., BRI1 is a critical component of a plasma-membrane receptor for plant steroids (2001) Nature, 410, pp. 380-383Warren, A.M., Hughes, M.A., Crampton, J.M., Zebedee: a novel copia-Ty1 family of transposable elements in the genome of the medically important mosquito Aedes aegypti (1997) Mol. Gen. Genet., 254, pp. 505-513Willmann, R., Lajunen, H.M., Erbs, G., Newman, M.A., Kolb, D., Tsuda, K., Katagiri, F., NĂŒrnberger, T., Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection (2011) Proc. Natl. Acad. Sci. USA, 108, pp. 19824-19829Zhang, W.J., Pedersen, C., Kwaaitaal, M., Gregersen, P.L., MĂžrch, S.M., Hanisch, S., Kristensen, A., Thordal-Christensen, H., Interaction of barley powdery mildew effector candidate CSEP0055 with the defence protein PR17c (2012) Mol. Plant Pathol., 13, pp. 1110-1119Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., Boller, T., Bacterial disease resistance in Arabidopsis through flagellin perception (2004) Nature, 428, pp. 764-767Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J.D., Boller, T., Felix, G., Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation (2006) Cell, 125, pp. 749-76

    Increasing The Density Of Markers Around A Major Qtl Controlling Resistance To Angular Leaf Spot In Common Bean

    No full text
    Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2UC) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning. © 2013 Springer-Verlag Berlin Heidelberg.11

    Molecular Characterization Of A Miraculin-like Gene Differentially Expressed During Coffee Development And Coffee Leaf Miner Infestation

    No full text
    The characterization of a coffee gene encoding a protein similar to miraculin-like proteins, which are members of the plant Kunitz serine trypsin inhibitor (STI) family of proteinase inhibitors (PIs), is described. PIs are important proteins in plant defence against insects and in the regulation of proteolysis during plant development. This gene has high identity with the Richadella dulcifica taste-modifying protein miraculin and with the tomato protein LeMir; and was named as CoMir (Coffea miraculin). Structural protein modelling indicated that CoMir had structural similarities with the Kunitz STI proteins, but suggested specific folding structures. CoMir was up-regulated after coffee leaf miner (Leucoptera coffella) oviposition in resistant plants of a progeny derived from crosses between C. racemosa (resistant) and C. arabica (susceptible). Interestingly, this gene was down-regulated during coffee leaf miner herbivory in susceptible plants. CoMir expression was up-regulated after abscisic acid application and wounding stress and was prominent during the early stages of flower and fruit development. In situ hybridization revealed that CoMir transcripts accumulated in the anther tissues that display programmed cell death (tapetum, endothecium and stomium) and in the metaxylem vessels of the petals, stigma and leaves. In addition, the recombinant protein CoMir shows inhibitory activity against trypsin. According to the present results CoMir may act in proteolytic regulation during coffee development and in the defence against L. coffeella. The similarity of CoMir with other Kunitz STI proteins and the role of CoMir in plant development and plant stress are discussed. © 2010 Springer-Verlag.2331123137Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., Basic local alignment search tool (1990) J Mol Biol, 215, pp. 403-410Balbyshev, N.F., Lorenzen, J.H., Hypersensitivity and egg drop: a novel mechanism of host plant resistance to Colorado potato beetle (Coleoptera: Chrysomelidae) (1997) J Econ Entomol, 90, pp. 652-657Bede, J.C., Musser, R.O., Felton, G.W., Korth, K.L., Caterpillar herbivory and salivary enzymes decrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoid biosynthesis (2006) Plant Mol Biol, 60, pp. 519-531Bodenhausen, N., Reymond, P., Signaling pathways controlling induced resistance to insect herbivores in Arabidopsis (2007) Mol Plant Microbe Interact, 20, pp. 1406-1420Brenner, E.D., Lambert, K.N., Kaloshian, I., Williamson, V.M., Characterization of LeMir, a root-knot nematode-induced gene in tomato with an encoded product secreted from the root (1998) Plant Physiol, 118, pp. 237-247de Guzman, R., Riggs, C.D., A survey of proteinases active during meiotic development (2000) Planta, 210, pp. 921-924Demura, T., Tashiro, G., Horiguchi, G., Kishimoto, N., Kubo, M., Matsuoka, N., Minami, A., Fukuda, H., Visualization by comprehensive microarray analysis of gene expression programs during transdifferentiation of mesophyll cells into xylem cells (2002) Proc Natl Acad Sci USA, 99, pp. 15794-15799Doss, R.P., Oliver, J.E., Proebsting, W.M., Potter, S.W., Kuy, S., Clement, S.L., Williamson, R.T., Devilbiss, E.D., Bruchins: insect-derived plant regulators that stimulate neoplasm formation (2000) Proc Natl Acad Sci USA, 97, pp. 6218-6223Gahloth, D., Selvakumar, P., Shee, C., Kumar, P., Sharma, A.K., Cloning, sequence analysis and crystal structure determination of a miraculin-like protein from Murraya koenigii (2010) Arch Biochem Biophys, 494, pp. 15-22Groover, A., Jones, A.M., Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis (1999) Plant Physiol, 119, pp. 375-384Guerreiro-Filho, O., Medina-Filho, H.P., Carvalho, A., Fontes de resistĂȘncia ao bicho-mineiro, Perileucoptera coffeella, em Coffea spp (1991) Bragantia, 50, pp. 45-55Guerreiro-Filho, O., Denolf, P., Peferoen, M., Decazy, B., Eskes, A.B., Frutos, R., Susceptibility of the coffee leaf miner (Perileucoptera spp.) to Bacillus thuringiensis delta-endotoxins: a model for transgenic perennial crops resistant to endocarpic insects (1998) Curr Microbiol, 36, pp. 175-179Guerreiro-Filho, O., Silvarolla, M.B., Eskes, A.B., Expression and mode of inheritance in coffee to leaf miner Perileucoptera coffeella (1999) Euphytica, 105, pp. 7-15Hansen, D., Macedo-Ribeiro, S., VerĂ­ssimo, P., Yoo, I.S., Sampaio, M.U., Oliva, M.L., Crystal structure of a novel cysteinless plant Kunitz-type protease inhibitor (2007) Biochem Biophys Res Commun, 360, pp. 735-740Haseloff, J., GFP variants for multispectral imaging of living cells (1999) Methods Cell Biol, 58, pp. 139-151Hilker, M., Stein, C., Schroder, R., Varama, M., Mumm, R., Insect egg deposition induces defense responses in Pinus sylvestris: characterisation of the elicitor (2005) J Exp Biol, 208, pp. 1849-1854Hirai, T., Sato, M., Toyooka, K., Sun, H.J., Yano, M., Ezura, H., Miraculin, a taste-modifying protein is secreted into intercellular spaces in plant cells (2010) J Plant Physiol, 167, pp. 209-215Huang, Y., Xiao, B., Xiong, L., Characterization of a stress responsive proteinase inhibitor gene with positive effect in improving drought resistance in rice (2007) Planta, 226, pp. 73-85JimĂ©nez, T., MartĂ­n, I., Labrador, E., Dopico, B., A chickpea Kunitz trypsin inhibitor is located in cell wall of elongating seedling organs and vascular tissue (2007) Planta, 226, pp. 45-55Jones, B.L., Fontanini, D., Trypsin/alpha-amylase inhibitors inactivate the endogenous barley/malt serine endoproteinase SEP-1 (2003) J Agric Food Chem, 51, pp. 5803-5814Jones, D.T., Taylor, W.R., Thornton, J.M., The rapid generation of mutation data matrices from protein sequences (1992) Comput Appl Biosci, 8, pp. 275-282Karrer, E.E., Beachy, R.N., Holt, C.A., Cloning of tobacco genes that elicit the hypersensitive response (1998) Plant Mol Biol, 36, pp. 681-690Koistinen, K.M., Soininen, P., Venalainen, T.A., Hayrinen, J., Laatikainen, R., Perakyla, M., Tervahauta, A.I., Karenlampi, S.O., Birch PR-10c interacts with several biologically important ligands (2005) Phytochemistry, 66, pp. 2524-2533Kozela, C., Regan, S., How plants make tubes (2003) Trends Plant Sci, 8, pp. 159-164Krauchenco, S., Pando, S.C., Marangoni, S., Polikarpov, I., Crystal structure of the Kunitz (STI)-type inhibitor from Delonix regia seeds (2003) Biochem Biophys Res Commun, 312, pp. 1303-1308Laskowski Jr., M., Kato, I., Protein inhibitors of proteinases (1980) Annu Rev Biochem, 49, pp. 593-626Lawrence, S.D., Novak, N.G., Blackburn, M.B., Inhibition of proteinase inhibitor transcripts by Leptinotarsa decemlineata regurgitant in Solanum lycopersicum (2007) J Chem Ecol, 33, pp. 1041-1048Li, J., Brader, G., Palva, E.T., Kunitz trypsin inhibitor: an antagonist of cell death triggered by phytopathogens and fumonisin b1 in Arabidopsis (2008) Mol Plant, 1, pp. 482-495Little, D., Gouhier-Darimont, C., Bruessow, F., Reymond, P., Oviposition by pierid butterflies triggers defense responses in Arabidopsis (2007) Plant Physiol, 143, pp. 784-800Liu, Y., Salzman, R.A., Pankiw, T., Zhu-Salzman, K., Transcriptional regulation in southern corn rootworm larvae challenged by soyacystatin N (2004) Insect Biochem Mol Biol, 34, pp. 1069-1077McLachlan, A.D., Threefold structural pattern in the soybean trypsin inhibitor (Kunitz) (1979) J Mol Biol, 133, pp. 557-563Medina-Filho, H.P., Carvalho, A.P., MĂŽnaco, L.C., Melhoramento do cafeeiro. XXXVII-observaçÔes sobre a resistĂȘncia do cafeeiro ao bicho mineiro (1977) Bragantia, 36, pp. 131-137Mondego, J.M.C., Guerreiro-Filho, O., Bengtson, M.H., Drummond, R.D., Felix, J.M., Duarte, M.P., Ramiro, D., Menossi, M., Isolation and characterization of Coffea genes induced during coffee leaf miner (Leucoptera coffeella) infestation (2005) Plant Sci, 169, pp. 351-360Murashige, T., Skoog, F., A revised medium for rapid growth and biossays with tobacco tissue culture (1962) Physiol Plant, 15, pp. 471-497Murdock, L.L., Shade, R.E., Lectins and proteinase inhibitors as plant defenses against insects (2002) J Agric Food Chem, 50, pp. 6605-6611Musser, R.O., Hum-Musser, S.M., Eichenseer, H., Peiffer, M., Ervin, G., Murphy, J.B., Felton, G.W., Herbivory: caterpillar saliva beats plant defenses (2002) Nature, 416, pp. 599-600Nicholas, K.B., Nicholas Jr., H.B., (1997) Gene doc: A tool for editing and annotating multiple sequence alignments, , http://www.psc.edu/biomed/genedoc, Distributed by the author. Available fromOliva, M.L., Sampaio, U.M., Bauhinia Kunitz-type proteinase inhibitors: structural characteristics and biological properties (2008) Biol Chem, 389, pp. 1007-1013Onesti, S., Brick, P., Blow, D.M., Crystal structure of a Kunitz-type trypsin inhibitor from Erythrina caffra seeds (1991) J Mol Biol, 217, pp. 153-176Paladino, A., Costantini, S., Colonna, G., Facchiano, A.M., Molecular modeling of miraculin: structural analyses and functional hypotheses (2008) Biochem Biophys Res Commun, 367, pp. 26-32Pompermayer, P., Lopes, A.R., Terra, W.R., Parra, J.R.P., Falco, M.C., Silva-Filho, M.C., Effects of soybean proteinase inhibitor on development, survival and reproductive potential of the sugarcane borer, Diatraea saccharalis (2001) Entomol Exp Appl, 99, pp. 79-85Ravichandran, S., Dasgupta, J., Chakrabarti, C., Ghosh, S., Singh, M., Dattagupta, J., The role of Asn14 in the stability and conformation of the reactive-site loop of winged bean chymotrypsin inhibitor: crystal structures of two point mutants Asn14-<Lys and Asn14-<Asp (2001) Protein Eng, 14, pp. 349-357Rawlings, N.D., Tolle, D.P., Barrett, A.J., MEROPS: the peptidase database (2004) Nucleic Acids Res 32, , (Database issue): D160-D164Reymond, P., Weber, H., Damond, M., Farmer, E.E., Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis (2000) Plant Cell, 12, pp. 707-720Rodrigues-Macedo, M.L., Machado Freire, M.G., Cabrini, E.C., Toyama, M.H., Novello, J.C., Marangoni, S., A trypsin inhibitor from Peltophorum dubium seeds active against pest proteinases and its effect on the survival of Anagasta kuehniella (Lepidoptera: Pyralidae) (2003) Biochim Biophys Acta, 1621, pp. 170-182Ryan, C.A., Protease inhibitors in plants: genes for improving defenses against insects and pathogens (1990) Annu Rev Phytopathol, 28, pp. 425-449Sali, A., Blundell, T.L., Comparative protein modeling by satisfaction of spatial restraints (1993) J Mol Biol, 234, pp. 779-815Sambrook, J., Fritsch, E.F., Maniatis, T., (1989) Molecular Cloning: A Laboratory Manual, , 2nd edn., Cold Spring Harbor, NY: Cold Spring Harbor LaboratorySaraste, M., Sibbald, P.R., Wittinghofer, A., The P-loop-a common motif in ATP- and GTP-binding proteins (1990) Trends Biochem Sci, 15, pp. 430-434Shapiro, A.M., Devay, J.E., Hypersensitivity reaction of Brassica nigra L (Cruciferae) kills eggs of Pieris butterflies (Lepidoptera: Pieridae) (1987) Oecologia, 71, pp. 631-632Shatters Jr., R.G., Bausher, M.G., Hunter, W.B., Chaparro, J.X., Dang, P.M., Niedz, R.P., Mayer, R.T., Sinisterra, X., Putative proteinase inhibitor gene discovery and transcript profiling during fruit development and leaf damage in grapefruit (Citrus paradisi Macf.) (2004) Gene, 326, pp. 77-86Song, H.K., Suh, S.W., Kunitz-type soybean trypsin inhibitor revisited: refined structure of its complex with porcine trypsin reveals an insight into the interaction between a homologous inhibitor from Erythrina caffra and tissue-type plasminogen activator (1998) J Mol Biol, 275, pp. 347-363Sumikawa, J.T., Brito, M.V., Macedo, M.L., Uchoa, A.F., Miranda, A., Araujo, A.P., Silva-Lucca, R.A., Oliva, M.L., The defensive functions of plant inhibitors are not restricted to insect enzyme inhibition (2010) Phytochemistry, 71, pp. 214-220Tamura, K., Dudley, J., Nei, M., Kumar, S., MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0 (2007) Mol Biol Evol, 24, pp. 1596-1599Thaler, J.S., Bostock, R.M., Interactions between abscisic-acid-mediated responses and plant resistance to pathogens and insects (2004) Ecology, 85, pp. 48-58Theerasilp, S., Kurihara, Y., Complete purification and characterization of the taste-modifying protein, miraculin, from miracle fruit (1988) J Biol Chem, 263, pp. 11536-11539Thompson, J.D., Higgins, D.G., Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice (1994) Nucleic Acids Res, 22, pp. 4673-4680Tsukuda, S., Gomi, K., Yamamoto, H., Akimitsu, K., Characterization of cDNAs encoding two distinct miraculin-like proteins and stress-related modulation of the corresponding mRNAs in Citrus jambhiri lush (2006) Plant Mol Biol, 60, pp. 125-136Vallee, F., Kadziola, A., Bourne, Y., Juy, M., Rodenburg, K.W., Svensson, B., Haser, R., Barley alpha-amylase bound to its endogenous protein inhibitor BASI: crystal structure of the complex at 1.9 A resolution (1998) Structure, 6, pp. 649-659van Doorn, W.G., Woltering, E.J., Many ways to exit? Cell death categories in plants (2005) Trends Plant Sci, 10, pp. 117-122Wagstaff, C., Leverentz, M.K., Griffiths, G., Thomas, B., Chanasut, U., Stead, A.D., Rogers, H.J., Cys proteinase gene expression and proteolytic activity during senescence of Alstroemeria petals (2002) J Exp Bot, 53, pp. 233-240Wu, H.M., Cheun, A.Y., Programmed cell death in plant reproduction (2000) Plant Mol Biol, 44, pp. 267-281Xu, F.X., Chye, M.L., Expression of Cys proteinase during developmental events associated with programmed cell death in brinjal (1999) Plant J, 17, pp. 321-327Xu, Z.F., Qi, W.Q., Ouyang, X.Z., Yeung, E., Chye, M.L., A proteinase inhibitor II of Solanum americanum is expressed in phloem (2001) Plant Mol Biol, 47, pp. 727-73

    High-resolution Transcript Profiling Of The Atypical Biotrophic Interaction Between Theobroma Cacao And The Fungal Pathogen Moniliophthora Perniciosa

    No full text
    Witches’ broom disease (WBD), caused by the hemibiotrophic fungus Moniliophthora perniciosa, is one of the most devastating diseases of Theobroma cacao, the chocolate tree. In contrast to other hemibiotrophic interactions, the WBD biotrophic stage lasts for months and is responsible for the most distinctive symptoms of the disease, which comprise drastic morphological changes in the infected shoots. Here, we used the dual RNA-seq approach to simultaneously assess the transcriptomes of cacao and M. perniciosa during their peculiar biotrophic interaction. Infection with M. perniciosa triggers massive metabolic reprogramming in the diseased tissues. Although apparently vigorous, the infected shoots are energetically expensive structures characterized by the induction of ineffective defense responses and by a clear carbon deprivation signature. Remarkably, the infection culminates in the establishment of a senescence process in the host, which signals the end of the WBD biotrophic stage. We analyzed the pathogen’s transcriptome in unprecedented detail and thereby characterized the fungal nutritional and infection strategies during WBD and identified putative virulence effectors. Interestingly,M. perniciosa biotrophic mycelia develop as long-termparasites that orchestrate changes in plantmetabolismto increase the availability of soluble nutrients before plant death. Collectively, our results provide unique insight into an intriguing tropical disease and advance our understanding of the development of (hemi)biotrophic plant-pathogen interactions.261142454269Adhikari, T., Balaji, B., Breeden, J., Goodwin, S., Resistance of wheat to Mycosphaerella graminicola involves early and late peaks of gene expression. Physiol. Mol (2007) Plant Pathol, 71, pp. 55-68Aime, M.C., Phillips-Mora, W., The causal agents of witches’ broom and frosty pod rot of cacao (chocolate, Theobroma cacao) form a new lineage of Marasmiaceae (2005) Mycologia, 97, pp. 1012-1022Albersheim, P., Muhlethaler, K., Frey-Wyssling, A., Stained pectin as seen in the electron microscope (1960) J. Biophys. Biochem. Cytol, 8, pp. 501-506Alvim, F.C., Mattos, E.M., Pirovani, C.P., Gramacho, K., Pungartnik, C., Brendel, M., Cascardo, J.C., Vincentz, M., Carbon sourceinduced changes in the physiology of the cacao pathogen Moniliophthora perniciosa (Basidiomycetes) affect mycelial morphology and secretion of necrosis-inducing proteins (2009) Genet. Mol. Res, 8, pp. 1035-1050Apel, K., Hirt, H., Reactive oxygen species: Metabolism, oxidative stress, and signal transduction (2004) Annu. Rev. Plant Biol, 55, pp. 373-399ArgĂŽLo Santos Carvalho, H., De Andrade Silva, E.M., Carvalho Santos, S., Micheli, F., Polygalacturonases from Moniliophthora perniciosa are regulated by fermentable carbon sources and possible post-translational modifications (2013) Fungal Genet. Biol, 60, pp. 110-121Argout, X., The genome of Theobroma cacao (2011) Nat. Genet, 43, pp. 101-108Azevedo, H., Lino-Neto, T., Tavares, R.M., An improved method for high-quality RNA isolation from needles of adult maritime pine trees (2003) Plant Mol. Biol. Rep, 21, pp. 333-338Berger, S., Sinha, A.K., Roitsch, T., Plant physiology meets phytopathology: Plant primary metabolism and plant-pathogen interactions (2007) J. Exp. Bot, 58, pp. 4019-4026Bonfig, K.B., Schreiber, U., Gabler, A., Roitsch, T., Berger, S., Infection with virulent and avirulent P. Syringae strains differentially affects photosynthesis and sink metabolism in Arabidopsis leaves (2006) Planta, 225, pp. 1-12Braun, B.R., Head, W.S., Wang, M.X., Johnson, A.D., Identification and characterization of TUP1-regulated genes in Candida albicans (2000) Genetics, 156, pp. 31-44Buchanan-Wollaston, V., The molecular biology of leaf senescence (1997) J. Exp. Bot, 48, pp. 181-199Caldo, R.A., Nettleton, D., Peng, J., Wise, R.P., Stagespecific suppression of basal defense discriminates barley plants containing fast- and delayed-acting Mla powdery mildew resistance alleles (2006) Mol. Plant Microbe Interact, 19, pp. 939-947Cantacessi, C., Campbell, B.E., Visser, A., Geldhof, P., Nolan, M.J., Nisbet, A.J., Matthews, J.B., Gasser, R.B., A portrait of the “SCP/TAPS” proteins of eukaryotes—developing a framework for fundamental research and biotechnological outcomes (2009) Biotechnol. Adv, 27, pp. 376-388Ceita, G.D., Involvement of calcium oxalate degradation during programmed cell death in Theobroma cacao tissues triggered by the hemibiotrophic fungus Moniliophthora pemiciosa (2007) Plant Sci, 173, pp. 106-117Chandran, D., Inada, N., Hather, G., Kleindt, C.K., Andwildermuth, M.C., Laser microdissection of Arabidopsis cells at the powdery mildew infection site reveals site-specific processes and regulators (2010) Proc. Natl. Acad. Sci, 107, pp. 460-465. , USAChou, H.M., Bundock, N., Rolfe, S.A., Scholes, J.D., Infection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolism (2000) Mol. Plant Pathol, 1, pp. 99-113Choudhary, V., Schneiter, R., Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins (2012) Proc. Natl. Acad. Sci, 109, pp. 16882-16887. , USAColeman, J.J., Mylonakis, E., Efflux in fungi: La piĂšce de rĂ©sistance (2009) PLoS Pathog, 5Cong, L., Ran, F.A., Cox, D., Lin, S., Barretto, R., Habib, N., Hsu, P.D., Zhang, F., Multiplex genome engineering using CRISPR/Cas systems (2013) Science, 339, pp. 819-823Da Hora Junior, B.T., Poloni, J.F., Lopes, M.A., Dias, C.V., Gramacho, K.P., Schuster, I., Sabau, X., Andmicheli, F., Transcriptomics and systems biology analysis in identification of specific pathways involved in cacao resistance and susceptibility to witches’ broom disease. Mol (2012) Biosyst, 8, pp. 1507-1519De O Barsottini, M.R., Functional diversification of cerato- platanins in Moniliophthora perniciosa as seen by differential expression and protein function specialization. Mol (2013) Plant Microbe Interact, 26, pp. 1281-1293De Oliveira, B.V., Teixeira, G.S., Reis, O., Barau, J.G., Teixeira, P.J., Do Rio, M.C., Domingues, R.R., Pereira, G.A., A potential role for an extracellular methanol oxidase secreted by Moniliophthora perniciosa in Witches’ broom disease in cacao. Fungal Genet (2012) Biol, 49, pp. 922-932De Wit, P.J., The genomes of the fungal plant pathogens Cladosporium fulvum and Dothistroma septosporum reveal adaptation to different hosts and lifestyles but also signatures of common ancestry (2012) PLoS Genet, 8Deeken, R., Engelmann, J.C., Efetova, M., Czirjak, T., MĂŒller, T., Kaiser, W.M., Tietz, O., Hedrich, R., An integrated view of gene expression and solute profiles of Arabidopsis tumors: A genomewide approach (2006) Plant Cell, 18, pp. 3617-3634Dezwaan, T.M., Carroll, A.M., Valent, B., Sweigard, J.A., Magnaporthe grisea pth11p is a novel plasma membrane protein that mediates appressorium differentiation in response to inductive substrate cues (1999) Plant Cell, 11, pp. 2013-2030Dias, C.V., Mendes, J.S., Dos Santos, A.C., Pirovani, C.P., Da Silva Gesteira, A., Micheli, F., Gramacho, K.P., De Mattos Cascardo, J.C., Hydrogen peroxide formation in cacao tissues infected by the hemibiotrophic fungus Moniliophthora perniciosa. Plant Physiol (2011) Biochem, 49, pp. 917-922Dodds, P.N., Rathjen, J.P., Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat (2010) Rev. Genet, 11, pp. 539-548Doehlemann, G., Wahl, R., Horst, R.J., Voll, L.M., Usadel, B., Poree, F., Stitt, M., KĂ€mper, J., Reprogramming a maize plant: Transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis (2008) Plant J, 56, pp. 181-195El Gueddari, N.E., Rauchhaus, U., Moerschbacher, B.M., Deising, H.B., Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi (2002) New Phytol, 156, pp. 103-112Evans, H.C., Pleomorphism in Crinipellis perniciosa, causal agent of Witches’ broom disease of cocoa (1980) Trans. Br. Mycol. Soc, 74, pp. 515-526Fernandez, D., Tisserant, E., Talhinhas, P., Azinheira, H., Vieira, A., Petitot, A.S., Loureiro, A., Duplessis, S., 454-pyrosequencing of Coffea arabica leaves infected by the rust fungus Hemileia vastatrix reveals in planta-expressed pathogen-secreted proteins and plant functions in a late compatible plant-rust interaction. Mol (2012) Plant Pathol, 13, pp. 17-37Fisher, M.C., Henk, D.A., Briggs, C.J., Brownstein, J.S., Madoff, L.C., McCraw, S.L., Gurr, S.J., Emerging fungal threats to animal, plant and ecosystem health (2012) Nature, 484, pp. 186-194Fotopoulos, V., Gilbert, M.J., Pittman, J.K., Marvier, A.C., Buchanan, A.J., Sauer, N., Hall, J.L., Williams, L.E., The monosaccharide transporter gene, AtSTP4, and the cell-wall invertase, Atbetafruct1, are induced in Arabidopsis during infection with the fungal biotroph Erysiphe cichoracearum (2003) Plant Physiol, 132, pp. 821-829Frias, G., Purdy, L.H., Schmidt, R.A., An inoculation method for evaluating resistence of cacao to Crinipellis perniciosa (1995) Plant Dis, 79, pp. 787-791Fujiki, Y., Yoshikawa, Y., Sato, T., Inada, N., Ito, M., Nishida, I., Watanabe, A., Dark-inducible genes from Arabidopsis thaliana are associated with leaf senescence and repressed by sugars. Physiol (2001) Plant, 111, pp. 345-352Gan, S., Amasino, R.M., Making sense of senescence (molecular genetic regulation and manipulation of leaf senescence) (1997) Plant Physiol, 113, pp. 313-319Garnica, D.P., Upadhyaya, N.M., Dodds, P.N., Rathjen, J.P., Strategies for wheat stripe rust pathogenicity identified by transcriptome sequencing (2013) PLoS ONE, 8Gerrits, P.O., Smid, L., A new, less toxic polymerization system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections (1983) J. Microsc, 132, pp. 81-85Gesteira, A.S., Micheli, F., Carels, N., Da Silva, A.C., Gramacho, K.P., Schuster, I., MacĂȘdo, J.N., Cascardo, J.C., Comparative analysis of expressed genes from cacao meristems infected by Moniliophthora perniciosa (2007) Ann. Bot. (Lond.), 100, pp. 129-140Gibbs, G.M., Roelants, K., O’bryan, M.K., The CAP superfamily: Cysteine-rich secretory proteins, antigen 5, and pathogenesis- related 1 proteins—roles in reproduction, cancer, and immune defense. Endocr (2008) Rev, 29, pp. 865-897Glazebrook, J., Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu (2005) Rev. Phytopathol, 43, pp. 205-227Godfrey, D., Böhlenius, H., Pedersen, C., Zhang, Z., Emmersen, J., Thordal-Christensen, H., Powdery mildew fungal effector candidates share N-terminal Y/F/WxC-motif (2010) BMC Genomics, 11, p. 317Goldman, N., Yang, Z., A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol (1994) Evol, 11, pp. 725-736Graham, I.A., Seed storage oil mobilization. Annu (2008) Rev. Plant Biol, 59, pp. 115-142Griffith, G.W., Nicholson, J., Nenninger, A., Birch, R.N., Hedger, J.N., Witches’ brooms and frosty pods: Two major pathogens of cacao. N.Z (2003) J. Bot, 41, pp. 423-435Guyon, K., BalaguĂ©, C., Roby, D., Raffaele, S., Secretome analysis reveals effector candidates associated with broad host range necrotrophy in the fungal plant pathogen Sclerotinia sclerotiorum (2014) BMC Genomics, 15, p. 336Horst, R.J., Engelsdorf, T., Sonnewald, U., Voll, L.M., Infection of maize leaves with Ustilago maydis prevents establishment of C4 photosynthesis (2008) J. Plant Physiol, 165, pp. 19-28Joly, D.L., Feau, N., Tanguay, P., Hamelin, R.C., Comparative analysis of secreted protein evolution using expressed sequence tags from four poplar leaf rusts (Melampsora spp.) (2010) BMC Genomics, 11, p. 422Jones, J.D., Dangl, J.L., The plant immune system (2006) Nature, 444, pp. 323-329Kale, S.D., External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells (2010) Cell, 142, pp. 284-295Karnovsky, M.J., A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy (1965) J. Cell Biol, 27, pp. 137-139Kawahara, Y., Oono, Y., Kanamori, H., Matsumoto, T., Itoh, T., Minami, E., Simultaneous RNA-seq analysis of a mixedtranscriptome of rice and blast fungus interaction (2012) PLoS ONE, 7Kemen, E., Gardiner, A., Schultz-Larsen, T., Kemen, A.C., Balmuth, A.L., Robert-Seilaniantz, A., Bailey, K., Jones, J.D., Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana (2011) PLoS Biol, 9Kilaru, A., Bailey, B.A., Hasenstein, K.H., Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol (2007) Lett, 274, pp. 238-244Kulkarni, R.D., Kelkar, H.S., Dean, R.A., An eight-cysteine- containing CFEM domain unique to a group of fungal membrane proteins. Trends Biochem (2003) Sci, 28, pp. 118-121Kunjeti, S.G., Evans, T.A., Marsh, A.G., Gregory, N.F., Kunjeti, S., Meyers, B.C., Kalavacharla, V.S., Donofrio, N.M., RNA-Seq reveals infection-related global gene changes in Phytophthora phaseoli, the causal agent of lima bean downy mildew. Mol (2012) Plant Pathol, 13, pp. 454-466Lam, H.M., Peng, S.S., Coruzzi, G.M., Metabolic regulation of the gene encoding glutamine-dependent asparagine synthetase in Arabidopsis thaliana (1994) Plant Physiol, 106, pp. 1347-1357Langmead, B., Trapnell, C., Pop, M., Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome (2009) Genome Biol, 10, p. R25Leal, G.A., Jr., Albuquerque, P.S., Figueira, A., Genes differentially expressed in Theobroma cacao associated with resistance to witches’ broom disease caused by Crinipellis perniciosa. Mol (2007) Plant Pathol, 8, pp. 279-292Leal, G.A., Gomes, L.H., Albuquerque, P.S., Tavares, F.C., Figueira, A., Searching for Moniliophthora perniciosa pathogenicity genes (2010) Fungal Biol, 114, pp. 842-854Li, L., Stoeckert, C.J., Jr., Roos, D.S., OrthoMCL: Identification of ortholog groups for eukaryotic genomes (2003) Genome Res, 13, pp. 2178-2189Link, T.I., Lang, P., Scheffler, B.E., Duke, M.V., Graham, M.A., Cooper, B., Tucker, M.L., Whitham, S.A., The haustorial transcriptomes of Uromyces appendiculatus and Phakopsora pachyrhizi and their candidate effector families. Mol (2014) Plant Pathol, 15, pp. 379-393Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408LoquĂ©, D., Ludewig, U., Yuan, L., Von WirĂ©N, N., Tonoplast intrinsic proteins AtTIP2;1 and AtTIP2;3 facilitate NH3 transport into the vacuole (2005) Plant Physiol, 137, pp. 671-680Lowe, R.G., Cassin, A., Grandaubert, J., Clark, B.L., Van Dewouw, A.P., Rouxel, T., Howlett, B.J., Genomes and transcriptomes of partners in plant-fungal-interactions between canola (Brassica napus) and two Leptosphaeria species (2014) PLoS ONE, 9Maere, S., Heymans, K., Kuiper, M., BiNGO: A Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks (2005) Bioinformatics, 21, pp. 3448-3449Marcel, S., Sawers, R., Oakeley, E., Angliker, H., Paszkowski, U., Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae (2010) Plant Cell, 22, pp. 3177-3187Meinhardt, L.W., Genome and secretome analysis of the hemibiotrophic fungal pathogen, Moniliophthora roreri, which causes frosty pod rot disease of cacao: Mechanisms of the biotrophic and necrotrophic phases (2014) BMC Genomics, 15, p. 164Meinhardt, L.W., Rincones, J., Bailey, B.A., Aime, M.C., Griffith, G.W., Zhang, D., Pereira, G.A., Moniliophthora perniciosa, the causal agent of witches’ broom disease of cacao: What’s new from this old foe? Mol (2008) Plant Pathol, 9, pp. 577-588Melnick, R.L., Marelli, J.P., Sicher, R.C., Strem, M.D., Bailey, B.A., The interaction of Theobroma cacao and Moniliophthora perniciosa, the causal agent of witches’ broom disease, during parthenocarpy. Tree Genet (2012) Genomes, 8, pp. 1261-1279Moktali, V., Park, J., Fedorova-Abrams, N.D., Park, B., Choi, J., Lee, Y.H., Kang, S., Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes (2012) BMC Genomics, 13, p. 525Monaghan, J., Zipfel, C., Plant pattern recognition receptor complexes at the plasma membrane (2012) Curr. Opin. Plant Biol, 15, pp. 349-357Mondego, J.M., A genome survey of Moniliophthora perniciosa gives new insights into Witches’ Broom Disease of cacao (2008) BMC Genomics, 9, p. 548Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., Wold, B., Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat (2008) Methods, 5, pp. 621-628Motamayor, J.C., The genome sequence of the most widely cultivated cacao type and its use to identify candidate genes regulating pod color (2013) Genome Biol, r53, p. 14MĂŒnch, S., Lingner, U., Floss, D.S., Ludwig, N., Sauer, N., Deising, H.B., The hemibiotrophic lifestyle of Colletotrichum species (2008) J. Plant Physiol, 165, pp. 41-51Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., Jones, J.D., A plant miRNA contributes to antibacterial resistance by repressing auxin signaling (2006) Science, 312, pp. 436-439O’ Brien, T.P., Feder, N., McCully, M.E., Polychromatic staining of plant cell walls by Toluidine blue O (1964) Protoplasma, 59, p. 368Orchard, J., Collin, H.A., Hardwick, K., Isaac, S., Changes in morphology and measurement of cytokinin levels during the development of witches’ brooms on cocoa (1994) Plant Pathol, 43, pp. 65-72Panstruga, R., Establishing compatibility between plants and obligate biotrophic pathogens (2003) Curr. Opin. Plant Biol, 6, pp. 320-326Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W., Scala, A., Mukherjee, P., Cerato-platanins: Elicitors and effectors (2014) Plant Sci, , http://dx.doi.org/10.1016/j.plantsci.2014.02.009Pedersen, C., Structure and evolution of barley powdery mildew effector candidates (2012) BMC Genomics, 13, p. 694Penman, D., Britton, G., Hardwick, K., Collin, H.A., Isaac, S., Chitin as a measure of biomass of Crinipellis perniciosa, causal agent of witches’ broom disease of Theobroma cacao. Mycol (2000) Res, 104, pp. 671-675Perfect, S.E., Green, J.R., Infection structures of biotrophic and hemibiotrophic fungal plant pathogens. Mol (2001) Plant Pathol, 2, pp. 101-108Petre, B., Morin, E., Tisserant, E., Hacquard, S., Da Silva, C., Poulain, J., Delaruelle, C., Duplessis, S., RNA-Seq of early-infected poplar leaves by the rust pathogen Melampsora larici-populina uncovers PtSultr3;5, a fungal-induced host sulfate transporter (2012) PLoS ONE, 7Pires, A.B., Gramacho, K.P., Silva, D.C., GĂłes-Neto, A., Silva, M.M., Muniz-Sobrinho, J.S., Porto, R.F., Pereira, G.A., Early development of Moniliophthora perniciosa basidiomata and developmentally regulated genes (2009) BMC Microbiol, 9, p. 158Prados-Rosales, R.C., RoldĂĄn-RodrĂ­guez, R., Serena, C., LĂłPez-Berges, M.S., Guarro, J., MartĂ­nez-Del-Pozo, Á., Di Pietro, A., A PR-1-like protein of Fusarium oxysporum functions in virulence on mammalian hosts (2012) J. Biol. Chem, 287, pp. 21970-21979Pungartnik, C., Melo, S.C., Basso, T.S., Macena, W.G., Cascardo, J.C., Brendel, M., Reactive oxygen species and autophagy play a role in survival and differentiation of the phytopathogen Moniliophthora perniciosa. Fungal Genet (2009) Biol, 46, pp. 461-472Purdy, L.H., Schmidt, R.A., Status of cacao witches’ broom: Biology, epidemiology, and management. Annu (1996) Rev. Phytopathol, 34, pp. 573-594Ranwez, V., Harispe, S., Delsuc, F., Douzery, E.J., MACSE: Multiple Alignment of Coding SEquences accounting for frameshifts and stop codons (2011) PLoS ONE, 6Rashotte, A.M., Carson, S.D., To, J.P., Kieber, J.J., Expression profiling of cytokinin action in Arabidopsis (2003) Plant Physiol, 132, pp. 1998-2011Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P., GenePattern 2.0. Nat (2006) Genet, 38, pp. 500-501Rincones, J., Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches’ broom pathogen Moniliophthora perniciosa. Mol (2008) Plant Microbe Interact, 21, pp. 891-908Robinson, M.D., McCarthy, D.J., Smyth, G.K., edgeR: A Bioconductor package for differential expression analysis of digital gene expression data (2010) Bioinformatics, 26, pp. 139-140Scarpari, L.M., Meinhardt, L.W., Mazzafera, P., Pomella, A.W., Schiavinato, M.A., Cascardo, J.C., Pereira, G.A., Biochemical changes during the development of witches’ broom: The most important disease of cocoa in Brazil caused by Crinipellis perniciosa (2005) J. Exp. Bot, 56, pp. 865-877Skibbe, D.S., Doehlemann, G., Fernandes, J., Walbot, V., Maize tumors caused by Ustilago maydis require organspecific genes in host and pathogen (2010) Science, 328, pp. 89-92Stergiopoulos, I., De Wit, P.J., Fungal effector proteins. Annu (2009) Rev. Phytopathol, 47, pp. 233-263Studholme, D.J., Glover, R.H., Boonham, N., Application of high-throughput DNA sequencing in phytopathology. Annu (2011) Rev. Phytopathol, 49, pp. 87-105Teixeira, P.J., Thomazella, D.P., Vidal, R.O., Do Prado, P.F., Reis, O., Baroni, R.M., Franco, S.F., Mondego, J.M., The fungal pathogen Moniliophthora perniciosa has genes similar to plant PR-1 that are highly expressed during its interaction with cacao (2012) PLoS ONE, 7Thimm, O., BlĂ€sing, O., Gibon, Y., Nagel, A., Meyer, S., KrĂŒger, P., Selbig, J., Stitt, M., MAPMAN: A user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes (2004) Plant J, 37, pp. 914-939Thomazella, D.P., Teixeira, P.J., Oliveira, H.C., Saviani, E.E., Rincones, J., Toni, I.M., Reis, O., Pereira, G.A., The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development (2012
    corecore