458 research outputs found

    Global Foliations of Vacuum Spacetimes with T2T^2 Isometry

    Get PDF
    We prove a global existence theorem (with respect to a geometrically- defined time) for globally hyperbolic solutions of the vacuum Einstein equations which admit a T2T^2 isometry group with two-dimensional spacelike orbits, acting on T3T^3 spacelike surfaces.Comment: 38 pages, 0 figures, LaTe

    Global constants in (2+1)--dimensional gravity

    Full text link
    The extended conformal algebra (so)(2,3) of global, quantum, constants of motion in 2+1 dimensional gravity with topology R x T^2 and negative cosmological constant is reviewed. It is shown that the 10 global constants form a complete set by expressing them in terms of two commuting spinors and the Dirac gamma matrices. The spinor components are the globally constant holonomy parameters, and their respective spinor norms are their quantum commutators.Comment: 14 pages, to appear in Classical and Quantum Gravity, Spacetime Safari: Essays in Honor of Vincent Moncrief on the Classical Physics of Strong Gravitational Field

    Cauchy horizons in Gowdy space times

    Full text link
    We analyse exhaustively the structure of \emph{non-degenerate} Cauchy horizons in Gowdy space-times, and we establish existence of a large class of non-polarized Gowdy space-times with such horizons. Added in proof: Our results here, together with deep new results of H. Ringstr\"om (talk at the Miami Waves conference, January 2004), establish strong cosmic censorship in (toroidal) Gowdy space-times.Comment: 25 pages Latex. Further information at http://grtensor.org/gowdy

    Perturbations of Spatially Closed Bianchi III Spacetimes

    Get PDF
    Motivated by the recent interest in dynamical properties of topologically nontrivial spacetimes, we study linear perturbations of spatially closed Bianchi III vacuum spacetimes, whose spatial topology is the direct product of a higher genus surface and the circle. We first develop necessary mode functions, vectors, and tensors, and then perform separations of (perturbation) variables. The perturbation equations decouple in a way that is similar to but a generalization of those of the Regge--Wheeler spherically symmetric case. We further achieve a decoupling of each set of perturbation equations into gauge-dependent and independent parts, by which we obtain wave equations for the gauge-invariant variables. We then discuss choices of gauge and stability properties. Details of the compactification of Bianchi III manifolds and spacetimes are presented in an appendix. In the other appendices we study scalar field and electromagnetic equations on the same background to compare asymptotic properties.Comment: 61 pages, 1 figure, final version with minor corrections, to appear in Class. Quant. Gravi

    Gravitational waves in general relativity: XIV. Bondi expansions and the ``polyhomogeneity'' of \Scri

    Get PDF
    The structure of polyhomogeneous space-times (i.e., space-times with metrics which admit an expansion in terms of rjlogirr^{-j}\log^i r) constructed by a Bondi--Sachs type method is analysed. The occurrence of some log terms in an asymptotic expansion of the metric is related to the non--vanishing of the Weyl tensor at Scri. Various quantities of interest, including the Bondi mass loss formula, the peeling--off of the Riemann tensor and the Newman--Penrose constants of motion are re-examined in this context.Comment: LaTeX, 28pp, CMA-MR14-9

    The generalization of the Regge-Wheeler equation for self-gravitating matter fields

    Full text link
    It is shown that the dynamical evolution of perturbations on a static spacetime is governed by a standard pulsation equation for the extrinsic curvature tensor. The centerpiece of the pulsation equation is a wave operator whose spatial part is manifestly self-adjoint. In contrast to metric formulations, the curvature-based approach to gravitational perturbation theory generalizes in a natural way to self-gravitating matter fields. For a certain relevant subspace of perturbations the pulsation operator is symmetric with respect to a positive inner product and therefore allows spectral theory to be applied. In particular, this is the case for odd-parity perturbations of spherically symmetric background configurations. As an example, the pulsation equations for self-gravitating, non-Abelian gauge fields are explicitly shown to be symmetric in the gravitational, the Yang Mills, and the off-diagonal sector.Comment: 4 pages, revtex, no figure

    Ashtekar Variables in Classical General Realtivity

    Full text link
    This paper contains an introduction into Ashtekar's reformulation of General Relativity in terms of connection variables. To appear in "Canonical Gravity - From Classical to Quantum", ed. by J. Ehlers and H. Friedrich, Springer Verlag (1994).Comment: 31 Pages, Plain-Tex; Further comments were added, minor grammatical changes made and typos correcte

    Entropic-acoustic instability of shocked Bondi accretion I. What does perturbed Bondi accretion sound like ?

    Get PDF
    In the radial flow of gas into a black hole (i.e. Bondi accretion), the infall of any entropy or vorticity perturbation produces acoustic waves propagating outward. The dependence of this acoustic flux on the shape of the perturbation is investigated in detail. This is the key process in the mechanism of the entropic-acoustic instability proposed by Foglizzo & Tagger (2000) to explain the instability of Bondi-Hoyle-Lyttleton accretion. These acoustic waves create new entropy and vorticity perturbations when they reach the shock, thus closing the entropic-acoustic cycle. With an adiabatic index 1<gamma<=5/3, the linearized equations describing the perturbations of the Bondi flow are studied analytically and solved numerically. The fundamental frequency of this problem is the cut-off frequency of acoustic refraction, below which ingoing acoustic waves are refracted out. This cut-off is significantly smaller than the Keplerian frequency at the sonic radius and depends on the latitudinal number l of the perturbations. When advected adiabatically inward, entropy and vorticity perturbations trigger acoustic waves propagating outward, with an efficiency which is highest for non radial perturbations l=1. The outgoing acoustic flux produced by the advection of vorticity perturbations is always moderate and peaks at rather low frequency. By contrast, the acoustic flux produced by an entropy wave is highest close to the refraction cut-off. It can be very large if gamma is close to 5/3. These results suggest that the shocked Bondi flow with gamma=5/3 is strongly unstable with respect to the entropic-acoustic mechanism.Comment: 14 pages, 11 figures, accepted for publication in A&

    On Further Generalization of the Rigidity Theorem for Spacetimes with a Stationary Event Horizon or a Compact Cauchy Horizon

    Get PDF
    A rigidity theorem that applies to smooth electrovac spacetimes which represent either (A) an asymptotically flat stationary black hole or (B) a cosmological spacetime with a compact Cauchy horizon ruled by closed null geodesics was given in a recent work \cite{frw}. Here we enlarge the framework of the corresponding investigations by allowing the presence of other type of matter fields. In the first part the matter fields are involved merely implicitly via the assumption that the dominant energy condition is satisfied. In the second part Einstein-Klein-Gordon (EKG), Einstein-[non-Abelian] Higgs (E[nA]H), Einstein-[Maxwell]-Yang-Mills-dilaton (E[M]YMd) and Einstein-Yang-Mills-Higgs (EYMH) systems are studied. The black hole event horizon or, respectively, the compact Cauchy horizon of the considered spacetimes is assumed to be a smooth non-degenerate null hypersurface. It is proven that there exists a Killing vector field in a one-sided neighborhood of the horizon in EKG, E[nA]H, E[M]YMd and EYMH spacetimes. This Killing vector field is normal to the horizon, moreover, the associated matter fields are also shown to be invariant with respect to it. The presented results provide generalizations of the rigidity theorems of Hawking (for case A) and of Moncrief and Isenberg (for case B) and, in turn, they strengthen the validity of both the black hole rigidity scenario and the strong cosmic censor conjecture of classical general relativity.Comment: 25 pages, LaTex, a shortened version, including a new proof for lemma 5.1, the additional case of Einstein-Yang-Mills-Higgs systems is also covered, to appear in Class. Quant. Gra
    corecore