19 research outputs found

    Phytoplankton chlorophyte structure as related to ENSO events in a saline lowland river (Salado River, Buenos Aires, Argentina)

    Get PDF
    We analyzed the phytoplankton present in the lower sector of the Salado River (Buenos Aires, Argentina) for 10 years (1995–2005) and detected significant changes occurring in chlorophyte abundance and species richness during La Niña event (1998–1999), which period was analyzed throughout the entire basin (main stream and tributaries). We compared the physicochemical and biologic variables between two El Niño–La Niña–Southern Oscillation (ENSO) periods – El Niño (March 1997–January 1998) and La Niña (May 1998–May 1999) – to identify possible indicators of a relationship between climatic anomalies and chlorophyte performance. Chlorophyte density increased during the La Niña. Under normal or extreme hydrologic conditions, mobile (Chlamydomonas spp.) and nonmobile (Monoraphidium spp.) chlorophytes codominated. These species belonged to Reynolds's functional groups X1 and X2, those typical of nutrient-enriched environments. Comparative analyses between El Niño and La Niña periods indicated significant differences in physicochemical (K+, dissolved polyphenols, particulate reactive phosphorus, alkalinity, pH) and biologic (species diversity and richness, phytoplankton and chlorophyte total densities) variables between the two periods at all basin sites. During the La Niña condition, species richness was greater owing to interconnected shallow lakes and drainage-channel inputs, while the Shannon diversity index was lower because of the high abundance values of Monoraphidium minutum. A detailed analysis of the chlorophytes in the entire basin, indicated that changes in density and species dominance occurred on a regional scale although diverse chlorophyte assemblages were identified in the different sectors of the Salado River basin. After La Niña event, the entire basin had the potential to revert to the previous density values, showing the resilience to global environmental changes and the ability to reestablish the general conditions of stability.Fil: Solari, Lía Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Gabellone, Nestor Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Claps, Maria Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Casco, Maria Adela. Universidad Nacional de la Plata. Facultad de Ciencias Naturales y Museo. Division Ficologia; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Quaini, Karina Paola. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Limnología "Dr. Raúl A. Ringuelet". Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Instituto de Limnología; ArgentinaFil: Neschuk, Nancy Carolina. Dirección Provincial de Saneamiento y Obras Hidráulicas del Ministerio de Infraestructura, Vivienda y Servicios Públicos de la Provincia de Buenos Aires; Argentin

    Molecular characterization and expression analysis of five different elongation factor 1 alpha genes in the flatfish Senegalese sole (Solea senegalensis Kaup): Differential gene expression and thyroid hormones dependence during metamorphosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Eukaryotic elongation factor 1 alpha (eEF1A) is one of the four subunits composing eukaryotic translation elongation factor 1. It catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome in a GTP-dependent manner during protein synthesis, although it also seems to play a role in other non-translational processes. Currently, little information is still available about its expression profile and regulation during flatfish metamorphosis. With regard to this, Senegalese sole (<it>Solea senegalensis</it>) is a commercially important flatfish in which <it>eEF1A </it>gene remains to be characterized.</p> <p>Results</p> <p>The development of large-scale genomics of Senegalese sole has facilitated the identification of five different <it>eEF1A </it>genes, referred to as <it>SseEF1A1</it>, <it>SseEF1A2</it>, <it>SseEF1A3</it>, <it>SseEF1A4</it>, and <it>Sse42Sp50</it>. Main characteristics and sequence identities with other fish and mammalian eEF1As are described. Phylogenetic and tissue expression analyses allowed for the identification of <it>SseEF1A1 </it>and <it>SseEF1A2 </it>as the Senegalese sole counterparts of mammalian <it>eEF1A1 </it>and <it>eEF1A2</it>, respectively, and of <it>Sse42Sp50 </it>as the ortholog of <it>Xenopus laevis </it>and teleost <it>42Sp50 </it>gene. The other two elongation factors, <it>SseEF1A3 </it>and <it>SseEF1A4</it>, represent novel genes that are mainly expressed in gills and skin. The expression profile of the five genes was also studied during larval development, revealing different behaviours. To study the possible regulation of <it>SseEF1A </it>gene expressions by thyroid hormones (THs), larvae were exposed to the goitrogen thiourea (TU). TU-treated larvae exhibited lower <it>SseEF1A4 </it>mRNA levels than untreated controls at both 11 and 15 days after treatment, whereas transcripts of the other four genes remained relatively unchanged. Moreover, addition of exogenous T4 hormone to TU-treated larvae increased significantly the steady-state levels of <it>SseEF1A4 </it>with respect to untreated controls, demonstrating that its expression is up-regulated by THs.</p> <p>Conclusion</p> <p>We have identified five different <it>eEF1A </it>genes in the Senegalese sole, referred to as <it>SseEF1A1</it>, <it>SseEF1A2</it>, <it>SseEF1A3</it>, <it>SseEF1A4</it>, and <it>Sse42Sp50</it>. The five genes exhibit different expression patterns in tissues and during larval development. TU and T4 treatments demonstrate that <it>SseEF1A4 </it>is up-regulated by THs, suggesting a role in the translational regulation of the factors involved in the dramatic changes that occurs during Senegalese sole metamorphosis.</p

    Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells

    Get PDF
    Significance It is generally believed that the outcome of many inductive interactions occurring during development is largely dependent on the responding tissue, the source of the signals playing a relatively minor part. Here, we compare induction of the neural plate by the node, and of placodes by the head mesoderm, and show that both inducing tissues elicit a similar initial response but that they later diverge. We characterize the initial common state by a variety of methods and show its similarity to ES cells, suggesting that these inductions may begin with a common “reprogramming” step. This initial state also shares many features in common with the border of the neural plate, suggesting that this region retains features of a “ground state.”</jats:p

    Brain aromatase from pejerrey fish (Odontesthes bonariensis): cDNA cloning, tissue expression, and immunohistochemical localization

    No full text
    The brain-type aromatase (CYP19A2) cDNA from pejerrey Odontesthes bonariensis was characterized. Its sequence differs from the ovarian-derived aromatase (CYP19A1) previously reported for the same species. The cDNA is 2305 bp in length and the deduced protein comprises 501 amino-acids. The percentage of identity was higher when compared to other brain-derived aromatase proteins (85–63%) and lower with ovarian-derived aromatases (64–57%). Pejerrey aromatases share 61% of identity. The tissue expression analysis showed that CYP19A2 was expressed in the kidney, brain, and pituitary gland of both sexes and also in the ovary, but not in the eye, spleen, liver, gill, and testis. Semi-quantitative RT-PCR analysis of different brain areas revealed that CYP19A2 was expressed significantly higher in anterior male brain areas than in the corresponding female areas, and also when compared to posterior brain areas from both sexes. An immunological analysis using a polyclonal anti-teleost aromatase showed immunoreactive aromatase cells bordering the telencephalic ventricle and a strong signal in the ependymal cells of the preoptic area and the hypothalamus. In the optic tectum immunoreactive aromatase cells were labeled in the ventral wall and in the ependymal layer of the third and fourth ventricle with lateral projections. In the pituitary gland immunoreactive aromatase cells could be found in the rostral and proximal pars distalis. In this gland, aromatase fibers were also detected in different areas; many of them concentrated around blood vessels

    Neural induction by the node and placode induction by head mesoderm share an initial state resembling neural plate border and ES cells

    No full text
    Around the time of gastrulation in higher vertebrate embryos, inductive interactions direct cells to form central nervous system (neural plate) or sensory placodes. Grafts of different tissues into the periphery of a chicken embryo elicit different responses: Hensen's node induces a neural plate whereas the head mesoderm induces placodes. How different are these processes? Transcriptome analysis in time course reveals that both processes start by induction of a common set of genes, which later diverge. These genes are remarkably similar to those induced by an extraembryonic tissue, the hypoblast, and are normally expressed in the pregastrulation stage epiblast. Explants of this epiblast grown in the absence of further signals develop as neural plate border derivatives and eventually express lens markers. We designate this state as "preborder"; its transcriptome resembles embryonic stem cells. Finally, using sequential transplantation experiments, we show that the node, head mesoderm, and hypoblast are interchangeable to begin any of these inductions while the final outcome depends on the tissue emitting the later signals

    State and societal responses to natural disasters in Latin American and Caribbean history

    No full text
    Natural hazards—earthquakes, hurricanes, floods, droughts, volcanoes, famines, epidemics, and climatic events such as El Niño–Southern Oscillations—have repeatedly struck Latin America and the Caribbean since pre-Columbian times. Natural disasters provide historians with an optic into political, social, economic, and cultural structures. Catastrophes reveal the ability of governments and administrators to efficiently and adequately respond, highlight embedded mentalities and social relationships, contribute to political and economic transformations, underscore scientific and technological advances, and the persistence of religious perspectives of calamities. States and societies that repeatedly experience natural hazards develop a culture of disaster to adapt and cope with catastrophic events by creating institutions and building codes, architecture, and mentalities. A historical perspective of contemporary calamities examines the political decisions, social and economic structures, and cultural milieu overtime that created the natural disasters
    corecore