23 research outputs found

    Cystalline inclusions in plasma cells

    No full text

    Vesicovaginal reflux: A case report

    No full text
    Vesicovaginal reflux is a common cause of urinary incontinence in girls. A micturating cystourethrogram, which is the diagnostic investigation of choice, can demonstrate retrograde filling of the vagina during micturition and the complete emptying of the vagina at the end of micturition. Vesicovaginal reflux is a rare cause of gross hydrocolpos occurring without any anatomical obstruction. The condition may be associated with functional voiding disturbances

    Electrooxidation of dopamine at N

    No full text

    Isolated injury of the cuboid bone

    No full text

    Radar plots facilitate differential diagnosis of acute promyelocytic leukemia and NPM1+ acute myeloid leukemia by flow cytometry

    No full text
    Background: Acute promyelocytic leukemia (APL) is one of the most life-threatening hematological emergencies and requires a prompt correct diagnosis by cytomorphology and flow cytometry (FCM) with later confirmation by cytogenetics/molecular genetics. However, nucleophosmin 1 muted acute myeloid leukemia (NPM1+ AML) can mimic APL, especially the hypogranular variant of APL. Our study aimed to develop a novel, Radar plot-based FCM strategy to distinguish APLs and NPM1+ AMLs quickly and accurately. Method: Diagnostic samples from 52 APL and 32 NPM1+ AMLs patients were analyzed by a 3-tube panel of 10-color FCM. Radar plots combining all markers were constructed for each tube. Percentages of positive leukemic cells and mean fluorescence intensity were calculated for all the markers. Results: APL showed significantly higher expression of CD64, CD2, and CD13, whereas more leukemic cells were positive for CD11b, CD11c, CD15, CD36, and HLA-DR in NPM1+ AMLs. Radar plots featured CD2 expression, a lack of a monocytic component, lack of expression of HLA-DR and CD15, and a lack of a prominent CD11c+ population as recurring characteristics of APL. The presence of blasts with low SSC, presence of at least some monocytes, some expression of HLA-DR and/or CD15, and a prominent CD11c population were recurrent characteristics of NPM1+ AMLs. Radar plot analysis could confidently separate all hypergranular APL cases from any NPM1+ AML and in 90% of cases between variant APL and blastic NPM1+ AML. Conclusion: Radar plots can potentially add to differential diagnostics as they exhibit characteristic patterns distinguishing APL and different types of NPM1+ AMLs

    MRI findings in Hirayama disease

    No full text
    The objective of the study was to study the magnetic resonance imaging (MRI) features of Hirayama disease on a 3 Tesla MRI scanner. Nine patients with clinically suspected Hirayama disease were evaluated with neutral position, flexion, contrast-enhanced MRI and fast imaging employing steady-state acquisition (FIESTA) sequences. The spectrum of MRI features was evaluated and correlated with the clinical and electromyography findings. MRI findings of localized lower cervical cord atrophy (C5-C7), abnormal curvature, asymmetric cord flattening, loss of attachment of the dorsal dural sac and subjacent laminae in the neutral position, anterior displacement of the dorsal dura on flexion and a prominent epidural space were revealed in all patients on conventional MRI as well as with the dynamic 3D-FIESTA sequence. Intramedullary hyperintensity was seen in four patients on conventional MRI and on the 3D-FIESTA sequence. Flow voids were seen in four patients on conventional MRI sequences and in all patients with the 3D-FIESTA sequence. Contrast enhancement of the epidural component was noted in all the five patients with thoracic extensions. The time taken for conventional and contrast-enhanced MRI was about 30–40 min, while that for the 3D-FIESTA sequence was 6 min. Neutral and flexion position MRI and the 3D-FIESTA sequence compliment each other in displaying the spectrum of findings in Hirayama disease. A flexion study should form an essential part of the screening protocol in patients with suspected Hirayama disease. Newer sequences such as the 3D-FIESTA may help in reducing imaging time and obviating the need for contrast

    Intravenous BCG vaccination reduces SARS-CoV-2 severity and promotes extensive reprogramming of lung immune cells

    No full text
    Summary: Bacillus Calmette-Guérin (BCG) confers heterologous immune protection against viral infections and has been proposed as vaccine against SARS-CoV-2 (SCV2). Here, we tested intravenous BCG vaccination against COVID-19 using the golden Syrian hamster model. BCG vaccination conferred a modest reduction on lung SCV2 viral load, bronchopneumonia scores, and weight loss, accompanied by a reversal of SCV2-mediated T cell lymphopenia, and reduced lung granulocytes. BCG uniquely recruited immunoglobulin-producing plasma cells to the lung suggesting accelerated local antibody production. BCG vaccination also recruited elevated levels of Th1, Th17, Treg, CTLs, and Tmem cells, with a transcriptional shift away from exhaustion markers and toward antigen presentation and repair. Similarly, BCG enhanced recruitment of alveolar macrophages and reduced key interstitial macrophage subsets, that show reduced IFN-associated gene expression. Our observations indicate that BCG vaccination protects against SCV2 immunopathology by promoting early lung immunoglobulin production and immunotolerizing transcriptional patterns among key myeloid and lymphoid populations
    corecore