23 research outputs found

    An evaluation of large diameter through-thickness metallic pins in composites

    Get PDF
    There is increasing demand for functional through-thickness reinforcement (TTR) in composites using elements whose geometry exceeds limitations of existing TTR methods like tufting, stitching, and z-pinning. Recently, static insertion of large diameter TTR pins into heated prepreg stacks has proven a feasible and robust reinforcement process capable of providing accurate TTR element placement with low insertion forces and lower tow damage compared with existing methods for similar element sizes (>1mm diameter) like post-cure drilling. Local mechanical performance and failure mechanics of these pinned laminates are reported here. Laminates with a single statically inserted pins (1.2, 1.5, and 2.0 mm) can mostly retain their in-plane integrity alongside a local improvement in mode I delamination toughness in carbon fibre-benzoxazine laminates. Tensile strength is mostly unaffected by the pins resulting from delamination suppression, whereas there is up to a doubling of Young’s modulus. Compressive strength is significantly diminished (up to 42 %) in pinned laminates. Interlaminar toughness is improved, and peak toughness is pushed ahead of the crack as pin diameter increases. The lack of significant deterioration in in-plane tensile properties in pinned laminates produced using static insertion can expand the range and forms of materials that can be inserted compared to existing TTR.This work was supported by the SEER project which has received funding from the European Union's Horizon 2020 research and innovation programme (Grant agreement 871875)

    Influence of Ambient Temperature on Part Distortion: A Simulation Study on Amorphous and Semi-Crystalline Polymer

    Get PDF
    Semi-crystalline polymers develop higher amounts of residual stress and part distortion (warpage) compared to amorphous polymers due to their crystalline nature. Additionally, the FDM processing parameters such as ambient temperature play an important role in the resulting residual stresses and part distortion of the printed part. Hence, in this study, the effect of ambient temperature on the in-built residual stresses and warpage of amorphous acrylonitrile-butadiene-styrene (ABS) and semi-crystalline polypropylene (PP) polymers was investigated. From the results, it was observed that increasing the ambient temperature from 50 °C to 75 °C and further to 120 °C resulted in 0.22-KPa and 0.37-KPa decreases in residual stress of ABS, but no significant change in the amount of warpage. For PP, increasing ambient temperature from 50 °C to 75 °C led to a more considerable decrease in residual stress (0.5 MPa) and about 3% increase in warpage. Further increasing to 120 °C resulted in a noticeable 2 MPa decrease in residual stress and a 3.4% increase in warpage. Reduction in residual stress in both ABS and PP as a result of increasing ambient temperature was due to the reduced thermal gradients. The enhanced warpage in PP with increase in ambient temperature, despite the reduction in residual stress, was ascribed to crystallization and shrinkage

    Energy Absorption Mechanisms in Layer-to-Layer 3D Woven Composites

    Get PDF
    3D woven composites provide improved out-of-plane performance over their two-dimensional counterparts. This sort of reinforced through thickness behaviour is desirable in crashworthiness applications where energy absorption can be increased by the composite material's resistance to delamination. The behaviour of these 3D materials in not well understood and fundamental data that can be used to validate and improve material models is not yet sufficiently comprehensive. Here we demonstrate that a modified layer-to-layer type 3D woven architecture can be effectively used in energy absorbing elements to produce repeatable and predictable progressive failure under axial crush conditions. Specific energy absorption (SEA) values in glass and carbon coupons of up to 62J/g and 95J/g respectively are achieved in the quasi-static regime; values up 93J/g to were achieved in the dynamic regime when carbon coupons are tested. Carbon specimens displayed uncharacteristic mixed mode failure with elements of ductile and brittle failure. The addition of a toughening agent showed mixed results in this study, providing quasi-static improvements (+8%) in SEA but significant diminishment in dynamic SEA (-22%). The failure modes present in all cases are explored in depth and the suitability of this material for industry crash applications is investigated

    Improved Energy Absorption in 3D Woven Composites by Weave Parameter Manipulation

    Get PDF
    3D woven composites show significantly improved out-of-plane properties over traditional 2D laminates. This high through-thickness reinforcement is desirable in crashworthiness applications where crushing energy can be increased by composites’ improved interlaminar toughness. However, their use in practical applications is stunted by the poor understanding of how small variations in weave parameters, whether intended or not, affect the performance of these materials. Here, we demonstrate that small changes in textile properties, in this case pick density and float length have a knock-on effect that can greatly improve or diminish the crush performance of a 3D woven layer-to-layer structural fabric. Quasi-static and dynamic energy absorption values up to approximately 95J/g and 92J/g respectively are achieved. Crush performance is investigated on omega-shaped coupons, under both quasi-static and dynamic loading conditions with crush rates between 2mm/min and 8.5m/s. The failure mechanisms present during progressive crush under quasi-static loading transitions between more expected brittle dominated failure and ductile dominated failure, which is more typical of metals under similar loading conditions. Whereas when dynamic loading is considered, the materials present a more typical splaying failure event. As a result, additional exploration of the three-point bending response of these varied architectures is presented as a means of further explaining the interplay between lamina bending and progressive folding/micro-buckling in these materials. The effect of the weave’s architectural alterations on physical composite properties such as weight, density and conformability to shape is also investigated
    corecore