8,182 research outputs found

    Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Get PDF
    Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysic

    Detection of a population gradient in the Sagittarius Stream

    Get PDF
    We present a quantitative comparison between the Horizontal Branch morphology in the core of the Sagittarius dwarf spheroidal galaxy (Sgr) and in a wide field sampling a portion of its tidal stream (Sgr Stream), located tens of kpc away from the center of the parent galaxy. We find that the Blue Horizontal Branch (BHB) stars in that part of the Stream are five times more abundant than in the Sgr core, relative to Red Clump stars. The difference in the ratio of BHB to RC stars between the two fields is significant at the 4.8 sigma level. This indicates that the old and metal-poor population of Sgr was preferentially stripped from the galaxy in past peri-Galactic passages with respect to the intermediate-age metal rich population that presently dominates the bound core of Sgr, probably due to a strong radial gradient that was settled within the galaxy before its disruption. The technique adopted in the present study allows to trace population gradients along the whole extension of the Stream.Comment: 4 pages, 3 .ps figures (fig. 1 at low resolution); Accepted for publication by A&A Letter

    FLAMES and XSHOOTER spectroscopy along the two BSS sequences of M30

    Full text link
    We present spectroscopic observations acquired with FLAMES and XSHOOTER at the Very Large Telescope for a sample of 15 Blue Straggler Stars (BSSs) in the globular cluster (GC) M30. The targets have been selected to sample the two BSS sequences discovered, with 7 BSSs along the blue sequence and 8 along the red one. No difference in the kinematical properties of the two groups of BSSs has been found. In particular, almost all the observed BSSs have projected rotational velocity lower than ~30 km/s, with only one (blue) fast rotating BSS (>90 km/s), identified as a W UMa binary. This rotational velocity distribution is similar to those obtained in 47 Tucanae and NGC 6397, while M4 remains the only GC studied so far harboring a large fraction of fast rotating BSSs. All stars hotter than ~7800 K (regardless of the parent BSS sequence) show iron abundances larger than those measured from normal cluster stars, with a clearcut trend with the effective temperature. This behaviour suggests that particle trasport mechanisms driven by radiative levitation occur in the photosphere of these stars, as already observed for the BSSs in NGC 6397. Finally, 4 BSSs belonging to the red sequence (not affected by radiative levitation) show a strong depletion of [O/Fe], with respect to the abundance measured in Red Giant Branch and Horizontal Branch stars. This O-depletion is compatible with the chemical signature expected in BSSs formed by mass transfer processes in binary systems, in agreement with the mechanism proposed for the formation of BSSs in the red sequence.Comment: Accepted for publication in Ap

    Mathematical models in landscape ecology: stability analysis and numerical tests

    Get PDF
    Si presentano vari modelli matematici per la valutazione della qualita' ecologica di un sistema ambientale. Si presenta poi un nuovo modello denominato PANDORA 2.0 e si mostra un'applicazione nel territorio della provincia di Viterb

    Non-dynamic origin of the acoustic attenuation at high frequency in glasses

    Full text link
    The sound attenuation in the THz region is studied down to T=16 K in glassy glycerol by inelastic x-ray scattering. At striking variance with the decrease found below 100 K in the GHz data, the attenuation in the THz range does not show any T dependence. This result i) indicates the presence of two different attenuation mechanisms, active respectively in the high and low frequency limits; ii) demonstrates the non-dynamic origin of the attenuation of THz sound waves, and confirms a similar conclusion obtained in SiO2 glass by molecular dynamics; and iii) supports the low frequency attenuation mechanism proposed by Fabian and Allen (Phys.Rev.Lett. 82, 1478 (1999)).Comment: 3 pages, 5 Figures, To be published in PR

    Constraining Cosmological Models by the Cluster Mass Function

    Get PDF
    We present a comparison between two observational and three theoretical mass functions for eight cosmological models suggested by the data from the recently completed BOOMERANG-98 and MAXIMA-1 cosmic microwave background (CMB) anisotropy experiments as well as peculiar velocities (PVs) and type Ia supernovae (SN) observations. The cosmological models have been proposed as the best fit models by several groups. We show that no model is in agreement with the abundances of X-ray clusters at ∼1014.7h−1M⊙\sim 10^{14.7} h^{-1}M_{\odot}.On the other hand, we find that the BOOM+MAX+{\sl COBE}:I, Refined Concordance and Λ\LambdaMDM are in a good agreement with the abundances of optical clusters. The P11 and especially Concordance models predict a slightly lower abundances than observed at ∼1014.6h−1M⊙\sim 10^{14.6} h^{-1}M_{\odot}. The BOOM+MAX+{\sl COBE}:II and PV+CMB+SN models predict a slightly higher abundances than observed at ∼1014.9h−1M⊙\sim 10^{14.9} h^{-1}M_{\odot}. The nonflat MAXIMA-1 is in a fatal conflict with the observational cluster abundances and can be safely ruled out.Comment: 17 pages, 2 figures, reference added, figures changes, substantial revision mad
    • …
    corecore