106 research outputs found

    The association of serum calprotectin (S100A8/S100A9) levels with disease relapses in PR3-ANCA-associated vasculitis

    Get PDF
    OBJECTIVES: S100A8/A9 (calprotectin) has shown promise as a biomarker for predicting relapse in AAV. This study investigated serum S100A8/A9 levels as a biomarker predicting future relapse in a large cohort of patients with severe ANCA-associated vasculitis (AAV). METHODS: Serum levels of S100A8/A9 were measured at baseline, months 2, and 6 following treatment initiation in 144 patients in the RAVE trial (cyclophosphamide/azathioprine vs. rituximab for induction of remission) who attained complete remission. RESULTS: Patients were divided into 4 groups: PR3-ANCA with (n=37), and without (n=56) relapse, and MPO-ANCA with (n=6) and without (n=45) relapse. Serum S100A8/A9 levels decreased in all groups during the first 6 months of treatment. The percentage reduction from baseline to month 2 was significantly different between relapsers and non-relapsers in the PR3-AAV group (p=0.046). A significantly higher risk of relapse was associated with an increase in S100A8/A9 between baseline and month 2 (p=0.006) and baseline and month 6 (p=0.0099) for all patients. Subgroup analysis demonstrated it was patients treated with rituximab and who increased levels of S100A8/A9 who were at greatest risk of future relapse (p=0.028). CONCLUSION: An increase in serum S100A8/A9 by month 2 or 6 compared to baseline identifies a subgroup of PR3-ANCA patients treated with rituximab at higher risk of relapse by 18 months. As rituximab is increasingly used for remission induction in relapsing PR3-ANCA patients, S100A8/A9 may assist in identifying those patients requiring more intensive or prolonged treatment

    Expression of tumour-specific antigens underlies cancer immunoediting

    Get PDF
    Cancer immunoediting is a process by which immune cells, particularly lymphocytes of the adaptive immune system, protect the host from the development of cancer and alter tumour progression by driving the outgrowth of tumour cells with decreased sensitivity to immune attack1, 2. Carcinogen-induced mouse models of cancer have shown that primary tumour susceptibility is thereby enhanced in immune-compromised mice, whereas the capacity for such tumours to grow after transplantation into wild-type mice is reduced2, 3. However, many questions about the process of cancer immunoediting remain unanswered, in part because of the known antigenic complexity and heterogeneity of carcinogen-induced tumours4. Here we adapted a genetically engineered, autochthonous mouse model of sarcomagenesis to investigate the process of cancer immunoediting. This system allows us to monitor the onset and growth of immunogenic and non-immunogenic tumours induced in situ that harbour identical genetic and histopathological characteristics. By comparing the development of such tumours in immune-competent mice with their development in mice with broad immunodeficiency or specific antigenic tolerance, we show that recognition of tumour-specific antigens by lymphocytes is critical for immunoediting against sarcomas. Furthermore, primary sarcomas were edited to become less immunogenic through the selective outgrowth of cells that were able to escape T lymphocyte attack. Loss of tumour antigen expression or presentation on major histocompatibility complex I was necessary and sufficient for this immunoediting process to occur. These results highlight the importance of tumour-specific-antigen expression in immune surveillance, and potentially, immunotherapy.National Institutes of Health (U.S.) (Grant 1 U54 CA126515-01)National Cancer Institute (U.S.) (Cancer Center Support Grant P30-CA14051)Margaret A. Cunningham Immune Mechanisms in Cancer Research Fellowship AwardJohnD. Proctor FoundationDaniel K. Ludwig Schola

    IL-17RA Signaling Amplifies Antibody-Induced Arthritis

    Get PDF
    Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel

    A Recombinant Vaccine Effectively Induces C5a-Specific Neutralizing Antibodies and Prevents Arthritis

    Get PDF
    OBJECTIVES: To develop and validate a recombinant vaccine to attenuate inflammation in arthritis by sustained neutralization of the anaphylatoxin C5a. METHODS: We constructed and expressed fusion protein of C5a and maltose binding protein. Efficacy of specific C5a neutralization was tested using the fusion protein as vaccine in three different arthritis mouse models: collagen induced arthritis (CIA), chronic relapsing CIA and collagen antibody induced arthritis (CAIA). Levels of anti-C5a antibodies and anti-collagen type II were measured by ELISA. C5a neutralization assay was done using a rat basophilic leukemia cell-line transfected with the human C5aR. Complement activity was determined using a hemolytic assay and joint morphology was assessed by histology. RESULTS: Vaccination of mice with MBP-C5a led to significant reduction of arthritis incidence and severity but not anti-collagen antibody synthesis. Histology of the MBP-C5a and control (MBP or PBS) vaccinated mice paws confirmed the vaccination effect. Sera from the vaccinated mice developed C5a-specific neutralizing antibodies, however C5 activation and formation of the membrane attack complex by C5b were not significantly altered. CONCLUSIONS: Exploitation of host immune response to generate sustained C5a neutralizing antibodies without significantly compromising C5/C5b activity is a useful strategy for developing an effective vaccine for antibody mediated and C5a dependent inflammatory diseases. Further developing of such a therapeutic vaccine would be more optimal and cost effective to attenuate inflammation without affecting host immunity

    Neutrophil-specific deletion of the CARD9 gene expression regulator suppresses autoantibody-induced inflammation in vivo

    Get PDF
    Neutrophils are terminally differentiated cells with limited transcriptional activity. The biological function of their gene expression changes is poorly understood. CARD9 regulates transcription during antifungal immunity but its role in sterile inflammation is unclear. Here we show that neutrophil CARD9 mediates pro-inflammatory chemokine/cytokine but not lipid mediator release during non-infectious inflammation. Genetic deficiency of CARD9 suppresses autoantibody-induced arthritis and dermatitis in mice. Neutrophil-specific deletion of CARD9 is sufficient to induce that phenotype. Card9(-/-) neutrophils show defective immune complex-induced gene expression changes and pro-inflammatory chemokine/cytokine release but normal LTB4 production and other short-term responses. In vivo deletion of CARD9 reduces tissue levels of pro-inflammatory chemokines and cytokines but not LTB4. The CARD9-mediated signalling pathway involves Src-family kinases, Syk, PLCΞ³2, Bcl10/Malt1 and NFΞΊB. Collectively, CARD9-mediated gene expression changes within neutrophils play important roles during non-infectious inflammation in vivo and CARD9 acts as a divergence point between chemokine/cytokine and lipid mediator release

    In Vivo Expression Pattern of MICA and MICB and Its Relevance to Auto-Immunity and Cancer

    Get PDF
    Non-conventional MHC class I MIC molecules interact not with the TCR, but with NKG2D, a C-type lectin activatory receptor present on most NK, Ξ³Ξ΄ and CD8+ Ξ±Ξ² T cells. While this interaction is critical in triggering/calibrating the cytotoxic activity of these cells, the actual extent of its in vivo involvement, in man, in infection, cancer or autoimmunity, needs further assessment. The latter has gained momentum along with the reported expansion of peripheral CD4+CD28βˆ’NKG2D+ T cells in rheumatoid arthritis (RA). We first initiated to extend this report to a larger cohort of not only RA patients, but also those affected by systemic lupus erythematosus (SLE) and SjΓΆgren's syndrome (SS). In RA and SS, this initial observation was further tested in target tissues: the joint and the salivary glands, respectively. In conclusion and despite occasional and indiscriminate expansion of the previously incriminated T cell subpopulation, no correlation could be observed between the CD4+CD28βˆ’NKG2D+ and auto-immunity. Moreover, in situ, the presence of NKG2D matched that of CD8+, but not that of CD4+ T cells. In parallel, a total body tissue scan of both MICA and MICB transcription clearly shows that despite original presumptions, and with the exception of the central nervous system, both genes are widely transcribed and therefore possibly translated and membrane-bound. Extending this analysis to a number of human tumors did not reveal a coherent pattern of expression vs. normal tissues. Collectively these data question previous assumptions, correlating a tissue-specific expression/induction of MIC in relevance to auto-immune or tumor processes

    Saposin C Coupled Lipid Nanovesicles Specifically Target Arthritic Mouse Joints for Optical Imaging of Disease Severity

    Get PDF
    Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is β€œflipped” to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7–8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints

    Photodynamic Therapy of Tumors Can Lead to Development of Systemic Antigen-Specific Immune Response

    Get PDF
    Background: The mechanism by which the immune system can effectively recognize and destroy tumors is dependent on recognition of tumor antigens. The molecular identity of a number of these antigens has recently been identified and several immunotherapies have explored them as targets. Photodynamic therapy (PDT) is an anti-cancer modality that uses a non-toxic photosensitizer and visible light to produce cytotoxic reactive oxygen species that destroy tumors. PDT has been shown to lead to local destruction of tumors as well as to induction of anti-tumor immune response. Methodology/Principal Findings: We used a pair of equally lethal BALB/c colon adenocarcinomas, CT26 wild-type (CT26WT) and CT26.CL25 that expressed a tumor antigen, Ξ²-galactosidase (Ξ²-gal), and we treated them with vascular PDT. All mice bearing antigen-positive, but not antigen-negative tumors were cured and resistant to rechallenge. T lymphocytes isolated from cured mice were able to specifically lyse antigen positive cells and recognize the epitope derived from beta-galactosidase antigen. PDT was capable of destroying distant, untreated, established, antigen-expressing tumors in 70% of the mice. The remaining 30% escaped destruction due to loss of expression of tumor antigen. The PDT anti-tumor effects were completely abrogated in the absence of the adaptive immune response. Conclusion: Understanding the role of antigen-expression in PDT immune response may allow application of PDT in metastatic as well as localized disease. To the best of our knowledge, this is the first time that PDT has been shown to lead to systemic, antigen- specific anti-tumor immunity.United States. National Cancer Institute (grant RO1CA/AI838801)United States. National Cancer Institute (grant R01AI050875
    • …
    corecore