34 research outputs found

    The temporal and long‐term impact of donor body mass index on recipient outcomes after kidney transplantation – a retrospective study

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153284/1/tri13505_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153284/2/tri13505.pd

    Effect of pre-sowing magnetic treatment of seeds with bio- and mineral fertilization on the soybean cultivated in a saline calcareous soil

    Get PDF
    Bio-farming is an eco-friendly advance that minimizes the required chemical additives for optimizing the quality of crops that their storage is often accompanied by seeds’ components degradation. Magnetic treatment of seed was considered as a promising tool improves germination and growth. This study aims to evaluate the effect of individual and combined application of bio-fertilizers and the N-P-K mineral fertilizers preceded by magnetic treatment of dry and/or water-soaked seeds before sowing on the yield and quality of soybean cultivated in a saline soil.The field experiment was carried out in a split-split plot design with triplicates. The main two factors (F1) were not bio-fertilized and bio-fertilized plots. The sub-factors (F2) were three application rates (A: 50%, B: 75%, and C: 100%) of recommended doses of the three N, P, K fertilizers. The sub-sub factors (F3) were seeds not magnetically treated (NM) and magnetically treated (M). All factors were studied for dry soybean seeds (without soaking) and soaked seeds in magnetically treated water. After harvesting, soil and plant samples were analyzed. The most significant increase in the soybean seed yield (kg ha-1) was by 49.98% for the bio-fertilized magnetized dry seeds at 75% and 100% mineral N-P-K fertilization compared with the NM soaked seeds at 50% N-P-K (A rate) without bio-fertilization. The 75% mineral fertilization significantly increased the protein (%) by 41.69% and decreased the proline (mg g-1dw) by 46.68%. Magnetic treatment of seeds before cultivation and combined bio/mineral N-P-K fertilization reduced the Proline that alleviats the stress conditions

    Endophytic Aspergillus hiratsukae mediated biosynthesis of silver nanoparticles and their antimicrobial and photocatalytic activities

    Get PDF
    In the current study, endophytic Aspergillus hiratsukae was used for the biosynthesis of silver nanoparticles (Ag-NPs) for the first time. The characterizations were performed using X ray diffraction (XRD), Transmission electron microscopy (TEM), Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM–EDX), Dynamic light scattering (DLS), Fourier transform infrared spectroscopy (FT-IR), and UV–Vis spectroscopy. The obtained results demonstrated the successful formation of crystalline, spherical Ag-NPs with particle diameters ranging from 16 to 31 nm. The FT-IR studied and displayed the various functional groups involved, which played a role in capping and reducing agents for Ag-NPs production. The SEM–EDX revealed that the main constituent of the AS-formed sample was primarily Ag, with a weight percentage of 64.2%. The mycosynthesized Ag-NPs were assessed for antimicrobial as well as photocatalytic activities. The antimicrobial results indicated that the synthesized Ag-NPs possess notable antibacterial efficacy against Staphylococcus aureus, Bacillus subtilis, and Escherichia coli, with minimum inhibitory concentrations (MICs) of Ag-NPs ranging from 62.5 to 250 μg/mL. Moreover, the biosynthesized Ag-NPs demonstrated weak antifungal activity against Aspergillus brasiliensis and Candida albicans, with MICs of 500 and 1,000 μg/mL, respectively. In addition, the mycosynthesized Ag-NPs exhibited photocatalytic activity toward acid black 2 (nigrosine) dye under both light and dark stimulation. Notably, After 300 min exposure to light, the nigrosine dye was degraded by 93%. In contrast, 51% degradation was observed after 300 min in darkness. In conclusion, Ag-NPs were successfully biosynthesized using endophytic A. hiratsukae and also exhibited antimicrobial and photocatalytic activities that can be used in environmental applications

    Targeted Skipping of Human Dystrophin Exons in Transgenic Mouse Model Systemically for Antisense Drug Development

    Get PDF
    Antisense therapy has recently been demonstrated with great potential for targeted exon skipping and restoration of dystrophin production in cultured muscle cells and in muscles of Duchenne Muscular Dystrophy (DMD) patients. Therapeutic values of exon skipping critically depend on efficacy of the drugs, antisense oligomers (AOs). However, no animal model has been established to test AO targeting human dystrophin exon in vivo systemically. In this study, we applied Vivo-Morpholino to the hDMD/mdx mouse, a transgenic model carrying the full-length human dystrophin gene with mdx background, and achieved for the first time more than 70% efficiency of targeted human dystrophin exon skipping in vivo systemically. We also established a GFP-reporter myoblast culture to screen AOs targeting human dystrophin exon 50. Antisense efficiency for most AOs is consistent between the reporter cells, human myoblasts and in the hDMD/mdx mice in vivo. However, variation in efficiency was also clearly observed. A combination of in vitro cell culture and a Vivo-Morpholino based evaluation in vivo systemically in the hDMD/mdx mice therefore may represent a prudent approach for selecting AO drug and to meet the regulatory requirement

    Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries

    Get PDF
    Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely

    Mini-dose long gonadotropin-releasing hormone (GnRH) agonist versus agonist flare stimulation protocol for in vitro fertilization poor responders

    No full text
    Objectives: To compare 2 stimulation protocols, mini-dose long gonadotropin releasing hormone (GnRH) agonist versus agonist flare for in vitro fertilization poor responders. Design: Prospective comparative nonrandomized clinical trial. Setting: Dr. Samir Abasss IVF center, Jeddah, Kingdom of Saudi Arabia from april 2012 to December 2012 on 50 women undergoing IVF/ICSI fulfilling the criteria of poor responders. Material and methods: Patients were allocated into 2 groups, group 1 (n = 25) received mini-dose long agonist and group 2 (n = 25) received agonist flare protocol. Main outcome: Number of oocytes retrieved (primary outcome), duration of stimulation (days), peak E2 level on the day of hCG injection, number of fertilized oocytes, number of transferred embryos and pregnancy rate/cycle. Results: Both groups were comparable regarding age, body mass index and duration of infertility (years). The difference in basal FSH and duration of stimulation (days) does not reach statistical significance (p value 0.833 and 0.373 respectively). There was a high statistical difference between both groups regarding peak E2 on day of hCG injection, number of oocytes retrieved, number of fertilized oocytes, number of transferred embryos; which is higher in the mini-dose agonist group (p value 0.00). Pregnancy rate/cycle was higher in the mini-dose agonist group (9/25 vs. 6/25) however this difference does not reach statistical significance (p value 0.355) which may be attributed to small sample size or advanced maternal age. Conclusion: Mini-dose long GnRHa stimulation protocol appears to be more beneficial for poor responders than GnRHa agonist flare

    Modulating the transcriptomic profile of multidrug-resistant Klebsiella pneumoniae biofilm formation by antibiotics in combination with zinc sulfate

    No full text
    Abstract Background Klebsiella pneumoniae is a significant healthcare-associated pathogen. We investigated the antimicrobial interaction pattern between zinc sulfate and antibiotics against K. pneumoniae biofilm on the phenotypic and genotypic levels. Methods Determining the minimum biofilm inhibitory concentrations and the transcriptomic profile of K. pneumoniae biofilm formation genes post-treatment were carried out to evaluate the effect on the phenotypic and genotypic levels, respectively. Results Zinc enhanced the antibiofilm potentials of cephalosporins, aminoglycosides, and ertapenem, whereas it antagonizes the effectiveness of fluoroquinolones and meropenem on the phenotypic level. On the molecular level, zinc enhanced the anti-biofilm efficacies of cephalosporins (cefotaxime, ceftriaxone, ceftazidime, cefpirome, and cefepime) via down-regulating the expression of biofilm-related genes by 18-, 38-, 5-, 77- and 2-folds, respectively. Zinc in combination with aminoglycosides (kanamycin, gentamicin, and amikacin) reduced the expression of biofilm-related genes by 40-, 2602- and 20-folds, respectively, and by 2-folds in combination with ertapenem. However, a reduction in the down-regulatory potentials of fluoroquinolones was recorded following combination with zinc by 2-, 2-, 15- and 14-folds, respectively, and an up-regulation in the expression levels of the tested genes by 2-folds in the case of zinc/meropenem combination. Conclusions Results revealed variable interaction patterns between different antibiotics in combination with zinc. Current findings also shed light on the antibiofilm potentials of zinc/antibiotics combinations especially when combining zinc with fluoroquinolones or meropenem to avoid their antagonistic effects

    Arabic text author identification using support vector machines

    No full text
    A model for Arabic text author identification is proposed. It classifies a set of Arabic text documents with unknown authorship by capturing the style of each author through features extracted from the text. The identification process is achieved through five phases which are: documents collection, dataset preparation, features extraction, features optimization and classification model building. The model relies on Support Vector Machines (SVM) and combines two feature types on two domains: Political Analysis Articles and Literature. The experiments show that the model is effective with classification accuracy that may reach 100%.

    High-Performance pH Sensor Electrodes Based on a Hexagonal Pt Nanoparticle Array-Coated Nanoporous Alumina Membrane

    No full text
    Porous anodic alumina membranes coated with Pt nanoparticles (PAAM/Pt) have been employed as pH sensor electrodes for H+ ion detection. The PAAM was designed using a two-step anodization process. Pt nanoparticles were then sputtered onto the membrane at different deposition times. The membrane’s morphological, chemical, and optical characteristics were carefully assessed following the fabrication stage using a variety of analytical techniques. The potential of the PAAM/Pt sensor electrode was investigated by measuring the potential using a simple potentiometric method. The effects of depositing Pt nanoparticles for 3–7 min on sensor electrode sensitivity were examined. The optimal potentiometric Nernstian response slope for the PAAM/Pt sensor electrode with 5 min Pt sputter coating is 56.31 mV/decade in the pH range of 3.0 to 10 at 293 K. Additionally, the PAAM/Pt sensor electrode’s stability and selectivity in various ions solutions were examined. The sensor electrode had a lifetime of more than six weeks and was kept in a normal air environment
    corecore